中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95657
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41144896      線上人數 : 454
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95657


    題名: EnHemo:融合蛋白質語言模型的集成框架用於識別高活性抗菌肽的溶血毒性
    作者: 吳晨瑄;Wu, Chen-Xuan
    貢獻者: 資訊工程學系
    關鍵詞: 溶血毒性;整合模型;深度學習;機器學習;遷移式學習;蛋白質語言模型;Hemolytic Toxicity;Ensemble Model;Transfer Learning;Deep Learning;Machine Learning;Protein Language Models
    日期: 2024-07-29
    上傳時間: 2024-10-09 17:07:43 (UTC+8)
    出版者: 國立中央大學
    摘要: 抗藥性是當前全球面臨的重大公共衛生挑戰之一。抗微生物肽(AMPs)被認為是應對日益嚴重的抗生素抗藥性威脅的有前景工具。然而,儘管AMPs具備許多優點,其在臨床應用中面臨一個關鍵挑戰,即對哺乳動物細胞的溶血毒性。為了克服這一挑戰,本研究引入名為EnHemo的整合模型,旨在辨識高活性抗菌肽的溶血毒性。EnHemo模型結合多種先進技術,包括極限梯度提升算法、殘差算法和遷移學習算法,並利用iFeature特徵和先進的蛋白質語言模型來提高解釋性和預測準確性。研究結果顯示,EnHemo模型在兩個數據集上分別達到了90.60%和96.43%的高準確率,顯著超越現有分類器在準確性和均衡分類任務上的表現。此外,EnHemo模型的多層次特徵整合和先進算法應用,顯示出其在實際應用中的潛力。總之,我們提出的EnHemo模型不僅能有效識別安全且具有高活性的抗菌肽,還為未來抗菌肽的設計和開發提供了重要的參考和指導。這一研究成果有望推動AMPs在臨床上的安全應用,為抗擊抗藥性威脅提供新的解決方案。;Antimicrobial resistance is one of the major public health challenges currently facing the world. Antimicrobial peptides are considered promising tools to address the growing threat of antibiotic resistance. However, despite their many advantages, AMPs face a critical challenge in clinical applications due to their hemolytic toxicity to mammalian cells. To overcome this challenge, we introduce an integrated model named EnHemo, designed to identify the hemolytic toxicity of high active AMPs. EnHemo combines multiple advanced technologies, including Extreme Gradient Boosting, residual algorithms, and transfer learning, utilizing iFeature features and advanced protein language models to enhance interpretability and predictive accuracy. The results show that EnHemo achieved high accuracy rates of 90.60% and 96.43% on two datasets, significantly outperforming existing classifiers in terms of accuracy and balanced classification tasks. Moreover, the multi-level feature integration and advanced algorithms of EnHemo demonstrate its potential in practical applications. In summary, the EnHemo model effectively identifies safe and highly active AMPs and offers important guidance for the design and development of future AMPs. This research outcome is expected to promote the safe clinical application of AMPs, providing a new solution to combat the threat of antimicrobial resistance.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML21檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明