摘要: | 本研究提出了一種創新概念,使用近場靜電紡絲(NFES)技術來創建一個自供電的循環火災警報傳感器(MPSFS)。這項技術結合了聚偏二氟乙烯-三氟乙烯(PVDF-TrFE)奈米纖維和柔性印刷電路板(FPCBs),並將其封裝在聚二甲基矽氧烷(PDMS)中,形成一個壓電奈米發電機(PENG)系統。這個系統隨後與Ti3C2Tx MXene/PVP薄膜整合,並添加了TPMS結構之墊片,以提高奈米發電機的輸出效率,創造一個火災警報傳感器。 我們展示了Ti3C2Tx MXene/PVP材料作為火災傳感器的潛力,因其柔韌性、優異的阻燃性和電阻變化特性。由於PVP分子和MXene片層之間的共價鍵,這種基於MXene的薄膜具有高阻燃性,使其適用於敏感且可重複使用的火災警報。通過熱氧化處理,MXene薄膜轉變為魚鱗狀的C/N混合二氧化鈦網絡,使其在持續火焰暴露下能快速激發電子,實現超快火災警報響應(約3.0秒)和循環火災警報功能。TPMS結構,作為奈米發電機和MXene/PVP薄膜之間的墊片,能輕鬆調整機械剛度以增強PENG性能。通過可控地調整參數生成不同厚度的TPMS結構,並透過壓縮測試找出作為MPSFS墊片的最佳設計,發現0.2 mm、0.3 mm和0.4 mm厚度中,0.2 mm厚度具有最低的彈性模量。這使得在壓縮奈米發電機以充電時能達到最大的變形度,並通過隨後的奈米發電機電壓輸出測試進一步驗證了這一發現。因此,它確保了MPSFS的充電性能。 總結而言,這項研究提出了一種創新方法,使用壓電奈米發電機(PENGs)、MXene/PVP薄膜和三重周期最小曲面(TPMS)結構墊片,創建了一個小型、自供電的火災警報系統,實現了高效的能量收集和火災監控。MXene/PVP薄膜在火災響應中提供了優異的阻燃性和可重複使用性,而TPMS結構的引入不僅增強了系統的機械強度,還由於其固有的彈性提高了奈米發電機的充電效率。這一創新系統顯著降低了火災風險,並展示了在推進消防技術方面的巨大潛力和應用前景。 ;This study proposes an innovative concept of using Near-Field Electrospinning (NFES) technology to create a self-powered cyclic fire alarm sensor (MPSFS). This technology combines polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofibers with flexible printed circuit boards (FPCBs), encapsulating them in polydimethylsiloxane (PDMS) to form a piezoelectric nanogenerator (PENG) system. This system is then integrated with Ti3C2Tx MXene/PVP and TPMS structure spacers are added to enhance the output efficiency of the nanogenerator, creating a fire alarm sensor. We demonstrated the potential of Ti3C2Tx MXene/PVP materials as fire sensors due to their flexibility, excellent flame retardancy, and resistance change characteristics. The MXene-based film, owing to covalent bonds between PVP molecules and MXene sheets, exhibits high flame retardancy, making it suitable for sensitive and reusable fire alarms. Through thermal oxidation treatment, the MXene film transforms into a fish-scale-like C/N mixed titanium dioxide network, enabling it to quickly excite electrons under continuous flame exposure, achieving ultra-fast fire alarm response (about 3.0 seconds) and cyclic fire alarm function. A triply periodic minimal surface (TPMS) structure, which is invariant under a rank-3 lattice of translations and can be easily tunes the mechanical stiffness to enhance the PENG performance, is added as a spacer between the nanogenerator and the MXene/PVP film. By controllably adjusting parameters to generate TPMS structures of different thicknesses and subsequently using compression tests to find the optimal design for use as a spacer in the MPSFS, it was found that 0.2 mm, 0.3 mm, and 0.4 mm thicknesses resulted in 0.2 mm being the thickness with the lowest elastic modulus. This allows for the greatest degree of deformation when pressing the nanogenerator to charge it, and this finding was further validated through subsequent voltage output tests of the nanogenerator with the addition of spacers. Thus, it ensures the charging performance of the MPSFS. In summary, this study proposes an innovative method to create a small, self-powered fire alarm system using piezoelectric nanogenerators (PENGs), MXene/PVP films, and triply periodic minimal surface (TPMS) structure spacers, achieving efficient energy harvesting and fire monitoring. The MXene/PVP films provide excellent flame retardancy and reusability in fire response, while the introduction of TPMS structures not only enhances the mechanical strength of the system but also improves the charging efficiency of the nanogenerator due to their inherent elasticity. This innovative system significantly reduces fire risk and demonstrates great potential and application prospects in advancing fire safety technology. |