博碩士論文 993203030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.191.223.123
姓名 吳建男(Jian-Nan Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氧化鋅摻雜3.5 at.% 鋁與0.00、0.59、1.35、2.36 at.% 鈦濺鍍薄膜之結構與特性分析研究
(On the structure and characterization of sputtered ZnO thin films doped with 3.5 at.% Al and 0.00, 0.59, 1.35, 2.36 at.% Ti)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以磁控濺鍍法製備透明導電氧化物薄膜,分別使用射頻(RF)功率濺射氧化鋅靶、純鋁靶而以直流(DC)功率濺射鈦靶來製備鈦鋁共摻雜氧化鋅透明導電薄膜,經濺鍍150分鐘,可獲得約700 nm厚度之薄膜。薄膜經能譜儀(EDS)分析可獲知其成份,薄膜內的金屬含量比重,使用XPS得知摻雜於氧化鋅系列薄膜中,鋁的峰值為73.7 eV,可得知為 Al2O3,其鋁摻雜後帶正三價電子。鈦的峰值為458.7 eV,可得知為 TiO2,其鈦摻雜後帶正四價電子。結構方面使用XRD分析可得知 AZO、TZO及TAZO透明導電薄膜都可改善未摻雜氧化鋅(Pure ZnO)(002)峰值強度及較差的晶粒尺寸,且由FE-SEM觀察也有相同的結果證實,其中以Ti0.59 at.% TAZO薄膜具有最大晶粒尺寸為43 nm。由AFM分析可了解摻雜鈦金屬後,可有效的降低Ra與Rmax的現象,達到較平滑表面的特性。觀察微結構可以發現摻雜鈦金屬後缺陷長度有增長的現象,可使得電子傳導路徑更為順暢。薄膜光電性質中以 Ti 0.59 at.% TAZO 薄膜具有最低 9.08×10-4Ω.cm電阻率及在可見光穿透度以94.3%為最佳。由電化學法分析薄膜耐酸鹼特性可發現隨鈦含量增加其腐蝕電流密度越小、抗蝕性增強的現象。
摘要(英) The purpose of this study is to prepare transparent conductive oxide thin film were prepared on glass substrate by three-target magnetron sputtering system in this work. The glass substrate was heated to 200℃, and the working pressure in the chamber was at 5 × 10-2 Torr. In the process of sputtering, using the radio frequency (RF) power sputtering zinc oxide (ZnO) target, aluminum (Al) target, the direct current (DC) power sputtering titanium (Ti) target to the preparation of titanium aluminum codoped zinc oxide (TAZO) transparent conductive films by sputtering for 150 minutes, available about 700 nm thickness film. The surface morphology and cross section of the films were examined by using composition was analyzed energy dispersive spectroscopy (EDS), the proportion of the metal content of the film using X-ray photoelectron spectroscopy (XPS) learned doped zinc oxide film series, the aluminum peak of 73.7 eV, can be learned of Al2O3, with its aluminum doping positive trivalent electrons. Titanium peak at 458.7 eV, can be learned TiO2 titanium doped with positive tetravalent electrons. Structure using X-ray diffraction (XRD) analysis can be learned that the AZO, TZO and TAZO film can be improved Pure ZnO (002) peak intensity and poor grain size, and by field emission scanning electron microscope (FE-SEM) observation of the same results confirmed, in which to Ti 0.59 at.% TAZO film has a maximum grain size of 43 nm.
Atomic force microscopy (AFM) analysis to understand the doping of titanium, which can effectively reduce the average roughness (Ra) and maximum roughness (Rmax) of the phenomenon, to achieve a more smooth surface features. Observe the microstructure can be doped titanium defect length growth of the phenomenon, can make the electron conduction path smoother. Thin film optical and electrical properties of Ti 0.59 at.% TAZO film has a minimum 9.08 × 10-4 Ωcm resistivity and in the visible light transmittance of 94.3% for the best. By the electrochemical method of thin film acid/alkali features can be found with the titanium content increases the corrosion current density is smaller, and enhanced corrosion resistance phenomenon.
關鍵字(中) ★ 磁控濺鍍
★ 鋁鈦共摻雜氧化鋅
★ 透明導電薄膜
★ 動態極化
關鍵字(英) ★ Potentiodynamic polarization
★ Magnetron sputtering
★ TAZO thin film
★ Transparent Conductive Oxide
論文目次 中文摘要.....................................................................................................i
Abstract......................................................................................................ii
致謝...........................................................................................................iv
目錄............................................................................................................v
表目錄.......................................................................................................xi
圖目錄......................................................................................................xii
第一章 緒論..............................................................................................1
1-1 前言.................................................................................................1
1-2 研究目的.........................................................................................5
第二章 原理與文獻回顧..........................................................................6
2-1 理論基礎.........................................................................................6
2-1-1 電漿.........................................................................................6
2-1-2 濺鍍理論.................................................................................7
2-1-3 磁控濺鍍系統.........................................................................8
2-1-4 鍍層的成核.............................................................................9
2-1-5 鍍層微結構的 Thornton 模型...............................................9
2-2 電化學腐蝕原理...........................................................................11
2-2-1腐蝕型態.................................................................................11
2-2-2腐蝕速率測試.........................................................................13
2-3文獻討論.........................................................................................16
第三章 實驗方法與儀器設備................................................................20
3-1 實驗流程.......................................................................................20
3-2 實驗步驟.......................................................................................20
3-2-1 試片清洗...............................................................................20
3-2-2 磁控濺鍍薄膜製作參數設定...............................................20
3-3分析儀器.........................................................................................21
3-3-1 SEM表面形貌觀察................................................................21
3-3-2 X-ray 結晶分析.....................................................................21
3-3-3 AFM表面粗糙度分析............................................................22
3-3-4 試片表面化學元素鍵結能分析XPS(x-ray photoelectron spectroscopy) ...................................................................................22
3-3-5穿透電子顯微鏡結構分析(Transmission electron microscopy ,TEM ) ........................................................................23
3-3-6表面電阻量測.........................................................................24
3-3-7薄膜載子濃度及霍爾移動率量測.........................................24
3-3-8 UV-Visible量測穿透率與經由光譜吸收計算能階(Eg) ......25
3-4電化學分析實驗. ...........................................................................25
3-4-1 相對電極及參考電極...........................................................25
3-4-2電化學試驗環境.....................................................................25
3-4-3 實驗流程及設置...................................................................26
3-4-4 電化學實驗方法...................................................................26
3-4-4-1 開路電位(Open circuit potential) ..................................26
3-4-4-2 動態極化(Potentiodynamic polarization scanning) ......26
3-4-4-3交流阻抗法(Electrochemical impedance spectroscopy).27
第四章 實驗結果..................................................................................28
4-1摻雜不同金屬對氧化鋅透明導電薄膜.........................................28
4-1-1 成份分析...............................................................................28
4-1-1-1 EDS分析..........................................................................28
4-1-1-2 XPS分析..........................................................................28
4-1-2 結構分析...............................................................................29
4-1-2-1 XRD分析.........................................................................29
4-1-2-2 FE-SEM分析...................................................................30
4-1-2-3 AFM分析........................................................................30
4-1-3 薄膜導電性分析...................................................................31
4-1-3-1 四點探針........................................................................31
4-1-4 薄膜光學分析.......................................................................31
4-1-4-1 穿透率分析....................................................................31
4-1-4-2光學能隙分析..................................................................32
4-2 摻雜鈦含量對TAZO透明導電薄膜之影響................................33
4-2-1 成份分析...............................................................................33
4-2-1-1 EDS分析..........................................................................33
4-2-1-2 XPS分析..........................................................................33
4-2-2 結構分析...............................................................................33
4-2-2-1 XRD分析.........................................................................33
4-2-2-2 FE-SEM分析...................................................................34
4-2-2-3 AFM分析........................................................................34
4-2-2-4 HRTEM分析...................................................................34
4-2-3 薄膜導電性分析...................................................................36
4-2-3-1 霍爾效應分析................................................................36
4-2-4 薄膜光學分析.......................................................................37
4-2-4-1 穿透率分析....................................................................37
4-2-4-2 光學能隙分析................................................................38
4-2-5 薄膜耐酸鹼分析...................................................................38
4-2-5-1動態極化量測..................................................................38
第五章 實驗討論....................................................................................39
5-1摻雜不同金屬對氧化鋅透明導電薄膜之影響.............................39
5-1-1 成份與結構特性...................................................................39
5-1-2 電性與光學特性...................................................................40
5-2摻雜鈦含量對TAZO透明導電薄膜之影響..................................42
5-2-1 成份與結構特性...................................................................42
5-2-2 電性與光學特性...................................................................44
5-2-3 耐酸鹼特性...........................................................................45
第六章 結論..........................................................................................47
第七章 未來展望..................................................................................49
第八章 參考文獻..................................................................................50
參考文獻 [1] 楊明輝,“透明導電膜”, 藝軒圖書出版社, 2008年二月第一版
[2] 許國銓, ”科技玻璃-高性能透明導電玻璃”, 材料與社會, 84 期, (82),110-119.
[3] H. Sheng, N.W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng, and Y.Lu, J.Electron Mater, Vol.32 (2003) 9
[4] H.K. Kim, S.H. Han, T.Y. Seong, Appl.Phys.Lett. Vol.77 (2000) 11
[5] H.K. Kim, K.K. Kim, S.J. Park, T.Y. Seong , J.Appl.Phys.Vol.94 (2003) 6
[6] J.N. Ding, F. Ye, N.Y. Yuan, C.B. Tan, Y.Y. Zhu, G.Q. Ding, Z.H. Chen, Applied Surface Science 257 (2010) 1420–1424
[7] T. Homma, T. Ueno, K. Sekizawa, A. T.M. Hirata, J. Occup. Health 45 (2003) 137.
[8] J. Ma, J. Feng, Thin Solid Films, 279 (1996) 213.
[9] T. Minami, H. Sato, H. Nanto , Jpn. J.Appl. Phy., 24 (1985) L781.
[10] H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, “Semiconducting Transparent Thin Films”,Institute of Physics Publishing, Bristol, 1995.
[11]K. M. Lakin, J. S. Wang, ,Appl. Phys. Lett. 38 (1981) 125.
[12] C. Agashe, O. Kluth, G. Schöpe, H. Siekmann, J. Hüpkes, B. Rech,
Thin Solid Films 442 (2003) 167.
[13] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, Appl. Surf. Sci. 239 (2005) 222.
[14] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J.-h. Jeong, B. Cheong, Thin Solid Films 515 (2006)1364.
[15] B. Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York, 1980.
[16] H. Xiao,半導體製程技術導論, 歐亞書局,92 年
[17] D.S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapaman and Hall, New York, 1991.
[18] S. M. Rossnagel et al., “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A.,1982.
[19] K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films, 102 (1983)1.
[20] H.W. Lee, S.P. Lau,, Y.G. Wang, K.Y. Tse, H.H. Hng, B.K. Tay , Journal of Crystal Growth 268 (2004) pp. 596–601 145
[21] W. Tang, D. C. Cameron, Thin Solid Films 238 (1994) 83.
[22] H. L. Hartnagel, A. K. Jain and C. Jagadish, published by Institute of Physics Publication, (1995), p.17.
[23] G. Gordillo and C. Calderón, Solar Energy Materials &Solar Cell 69(2001)251.
[24] A. S. Reddy, G. V. Rao, S. Uthanna, P. S. Reddy, Phys. ,B 370 (2005)29
[25] Y. Igasaki and H. Aito, Thin Solid Films, Vol.199, (1991),pp.223-230.
[26] J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9 (1976) 1002
[27] B.D. Cullity, Elements of X-ray Diffractions, Addison-Wesley, Reading,MA, 1978, p. 102
[28] E. Burstein, Phys. Rev.,93(1954) p.632-633.
[29] T. S. Moss, Phys. Soc. London Sect. B, 67(1954) p.775-782.
[30] J.G.Speight.”Lange’’s handbook of chemistry”,Mc Graw Hill, 70th Anniversary Edition,p.1.309
[31] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publ.Co.,1967.
[32] J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9 (1976) 1002
[33] B.D. Cullity, Elements of X-ray Diffractions, Addison-Wesley, Reading, MA, 1978, p. 102
[34] C.A. Tseng, J.C Lin, Y.F Chang, Appl. Surf. Sci. 258 (2012) 5996– 6002
[35] S.S. Lin, J.L. Huang, D.F. Lii, Mater.Chem. Phys. 90 (2005) 22-30
[36]Gaarenstroom,S.W. Winograd. N.J.Chen. Phys.67,3500(1977)
[37]Wagner.C.D,Passoja, D.E, Hillery, H.F, Kinisky, T.G., Six, J.Vac.Sci.Technol. 21,933(1982)
[38]Nefedov.V.I..Salyn. Y.V.,Chertkov,A.A., Padurets, L.N Zh. Neorg, Khim. 19.1443(1974).
[39] J. H. Kang, M. H. Lee, Curr. Appl. Phys. 11 (2011) S333-S336.
[40] H. Chen, J. Ding , Shuyi Ma, Superlattices and Microstructures 49 (2011) 176–182
[41] F.H. Wang , H.P. Chang, J.C. Chao,Thin Solid Films 519 (2011) 5178–5182
[42] L.H. Cheng, L.Y. Zheng , L. Meng,Ceramics International 38S (2012) S457–S461
[43] Z.Weng, Z. Huang, Physica B 407(2012)743–747
[44] T. Minami, S. Ida, Thin Solid Films 445 (2003) 268–273
[45] Y. Liu , J. Lian , Appl.Surf. Sci. 253 (2007) 3727–3730
[46] J.L. Chung, J.C. Chen, Appl.Surf. Sci. 255 (2008) 2494–2499
[47] Q.B. Ma, Z.Z. Ye, H.P. He, Mate. Sci. in Semi. Proc. 10 (2007) 167–172
[48] X.Q. Gu, L.P. Zhu , L. Cao , Sci. in Semi. Proc. 14 (2011) 48–51
[49] J. H. Kang, M. H. Lee, Curr. Appl. Phys. 11 (2011) S333-S336
[50] H. Chen, W. Guo, J. Ding, S. Ma, Superlattices and Microstructures 51 (2012) 544–551
[51] 彭坤增,"鈧共摻雜含量(0~2.37wt%)對摻鋁氧化鋅透明導電薄膜之結構與特性影響研究",博士論文,國立中央大學機械工程學系,民國97年。
[52]楊明輝,透明導電薄膜,藝軒圖書出版社,民國97年
[53]彭彥均,"AZO與ITO等透明導電氧化薄膜之電化學行為",碩士論文,國立中央大學機械工程學系,民國96年。
[54] D. D.Malinovska, N. Tzenov, M. Tzolov, L. Vassilev, Materials Science and Engineering, 52 (1998) 59
[55] A. V. Singh and R. M. Mehra, J. Appl. Phys, 90 (2001) 566
[56] William L. Masterton, “Cecile N, in: Hurley. Chemistry: Principles and Reactions”, 6th, Cengage Learning, 2008: 18.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2012-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明