博碩士論文 100223060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:113 、訪客IP:3.17.187.35
姓名 洪仁超(Ren-Chau Hung)  查詢紙本館藏   畢業系所 化學學系
論文名稱 應用於染料敏化太陽能電池之金屬錯和物固著配位基的合成
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 太陽能是一個不受地形影響、乾淨且儲量豐富的能源,要把太陽光能轉換成電能就需要使用太陽能電池。其中第三代太陽能電池中的染料敏化太陽能電池( DSSC) ,為現在太陽能電池的研發重點之一。以釕金屬錯合物作為DSSC的光敏劑有不錯的光電效率表現,本篇論文主要是開發釕金屬錯合物的固著配位基。過去開發固著配位基的文獻,雖然都成功地使元件的光電流值( Jsc)提升,但開路電壓(Voc)下降,使得元件整體的光電轉換效率並沒有顯著的提升,因此開發出一個可以提升染料的吸光能力並同時提升Voc的固著配位基為本篇論文的重點:其做法為在固著配位基的 bipyridine及 COOH間引入噻唑(thiazole)單元,合成出 Ligand 50,利用噻唑擁有比噻吩更好的拉電子能力,使染料的 LUMO軌域主要集中在固著配位基;當染料受光激發時,大部分的電子可以經由固著配位基注入二氧化鈦,提高二氧化鈦的費米能階(femi level),增加元件之 Voc。本篇論文探討 Ligand 50的合成路徑以及合成時中間所遭遇到的問題。
摘要(英) Solar energy is a clean and abundant energy. Solar cells is a device to convert solar energy to electricity. Dye sensitized solar cells (DSSCs), one of the 3rd generation solar cells, has been investigated extensively in the part 3 decades. Ruthenium complex photosensitizer has a good efficiency. This thesis focus majorly in developing new anchoring ligand of Ruthenium complex. Past studies showed that extention the conjugation length of the anchoring ligands was successfully increased the short-circuit photocurrent density(Jsc), however the open-circuit voltage (Voc) decreased. Therefore searching for the anchoring ligand which can improve the absorption coefficient of Ru-based dye and also improve Voc of the corrospondly device, is the goal of this thesis. A thiazole unit was inserted between bipyridine of the anchoring ligand to form the Ligand 50. Thiazole the better electron withdrawing moiety compare to thiophene, dye molecule incorporate a thiazole moiety in the anchoring ligand make the LUMO distribute more in the anchoring ligand. Therefore when the dye was excited by light, the electrons can more to the anchoring ligand then inject into titania dioxide. Life the femi-level of titania dioxide, increase the Voc of device. This thesis mainly discussed the prepartion of Ligand 50 and the problem during the synthesis.
關鍵字(中) ★ 染料敏化太陽能電池
★ 固著配位基
★ 噻唑
關鍵字(英) ★ DSSC
★ anchroing
★ thiazole
論文目次 目錄
中文摘要..................................................I
英文摘要..................................................II
目錄......................................................III
圖目錄....................................................VI
表目錄..................................................VIII
壹、序論..................................................1
1-1、前言.................................................1
1-2、太陽能電池的種類.....................................2
1-3、染料敏化太陽能電池的組成與工作原理...................3
1-4、光電轉換效率(η)的量測.............................5
1-4-1、IPCE (incident photon to current conversion efficiency)..............................................6
1-4-2、總光電轉換效率( η ) ..............................7
1-5、釕金屬光敏化劑.......................................8
1-6、本實驗室的輔助配位基(ancillary ligand)的設計.........11
1-6-1、本實驗室的輔助配位基的設計:增加共軛單元............11
1-6-2、本實驗室的輔助配位基的設計:使用electron-donor group.13
1-6-3、固著配位基(anchoring ligand)的研究.................16
1-6-3-1、固著配位基的設計:增加共軛單元...................18
1-7、研究動機.............................................29
貳、實驗部分...............................................30
2-1、實驗藥品..............................................30
2-2、儀器分析與樣品製備....................................33
2-2-1、核磁共振光譜儀 (NMR) ...............................33
2-3、合成步驟..............................................34
2-3-1、ligand-B11的合成....................................34
2-3-2、Ligand 50的合成.....................................35
2-3-2-1、2-(trimethylsilyl)thiazole (2-TST)的合成..........36
2-3-2-2、2-trimethylsilyl-5-trimethylstannylthiazol (2-ST-5TMSn-T)的合成.............................................37
2-3-2-3、5-trimethylstannylthiazol (5TMSn-T)的合成.........38
2-3-2-4、4-4’Bithiazol-bipyridine (4-4’BTBPy)的合成......39
2-3-2-5、Ethyl 5-ethoxycarbonyl-4,4’-bithiazol-bipyridine( Ligand 50)的合成...........................................41
参、結果與討論.............................................43
3-1、Ligand 50的合成設計...................................43
3-1-1、本研究失敗的合成步驟探討............................45
3-1-1-1、2-thiazolecarboxylic acid ethyl ester(2-OEtT)的合成.........................................................45
3-1-1-2、ethyl 5-(trimethylstannyl)thiazole-2-carboxylate(5-TSn-2OEtT)的合成........................................46
3-1-1-3、ethyl 5-(trimethylstannyl)thiazole-2-carboxylate(5-TSn-2OEtT)的合成(2).......................................48
3-1-1-4、ethyl 5-(trimethylstannyl)thiazole-2-carboxylate(5-TSn-2OEtT)的合成(3).......................................50
3-1-1-4、ethyl 5-(trimethylstannyl)thiazole-2-carboxylate(5-TSn-2OEtT)的合成(4).......................................52
3-1-2、Ligand 50 的合成設計(2)............................53
3-1-2-1、由4-4’BTBPy 合成Ligand 50的條件探討.............54
3-1-2-1-1、由4-4’BTBPy 合成Ligand 50的條件探討:拔氫步驟時的
反應溫度..................................................56
3-1-2-1-2、由4-4’BTBPy 合成Ligand 50的條件探討:拔氫使用的
鹼........................................................58
3-1-2-1-3、由4-4’BTBPy 合成Ligand 50的條件探討:拔氫使的反應時間......................................................60
肆、結論..................................................63
伍、參考文獻..............................................64
參考文獻 1. R.F.Service, “ Solar Report Sets the Agenda”. Science, 2005, 309, 548
2. J.Potocnik, “ Renewable Energy Sources and the Realities of Setting an Energy Agenda”. Science, 2007, 315, 810
3. 林明獻,太陽電池技術入門,全華,2007,1
4. Trend in Photovoltaic Applications. Survey report of selected IEA countries between 1992 and 2007, 2008
5. I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egass, C. DeHart, J. Scharf, B. E. MCandless, R.Noufi. “Characterization of 19.9 %-Efficient”. National Renewable Energy Laboratory, 2008
6. M. A. Green, Third Generation PhotoVoltaic: Advanced Solar Energy Conversion; Springer-Verlag: Berlin, Heidelberg, 2003.
7. Aswani Yella, Hsuan-Wei Lee, Hoi Nok Tsao, Chenyi Yi, Aravind Kumar Chandiran, Md.Khaja Nazeeruddin, Eric Wei-Guang Diau, Chen-Yu Yeh, Shaik M Zakeeruddin, Michael Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency”, Science, 2012, 334, 629
8. Michael Grätzel.” Recent Advances in Sensitized Mesoscopic Solar
Cells”. Acc. Cem. Res. 2009, 42, 1788
9. A. Listorti, C. Creager, P. Sommeling, J. Kroon, E. Palomares, A.
Fornelli, B. Breen, P.R.F. Barnes, J.R. Durrant, C. Law, B. O’Regan, “The mechanism behind the beneficial effect of light soaking on injection efficiency and photocurrent in dye sensitized solar cells”. Energy Environ. Sci. 2011, 4, 3494
10. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M." A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells“. J. Phys. Chem. B 2003, 107, 13280
11. P. Wang, S. M. Zakeeruddin, J.-E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel.” A stable quasi-solid-state dye-sensitized
solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”. Nature Materials. 2003, 2, 402
12. Won-Sik Han, Jung-Kyu Han, Hyun-Young Kim, Mi Jin Choi, Yong-Soo Kang, Chyongjin Pac, and Sang Ook Kang.” Electronic Optimization of Heteroleptic Ru(II)Bipyridine Complexes by Remote Substituents: Synthesis, Characterization, and Application to Dye-Sensitized Solar Cells”. Inorg. Chem. 2011, 50, 3271
13. Ahmed El-Shafei, Maqbool Hussain, Aasim Atiq, Ashraful Islam and Liyuan Hanb.” A novel carbazole-based dye outperformed the benchmark dye N719 for high efficiency dye-sensitized solar cells (DSSCs)”. J. Mater. Chem. 2012, 22, 24048
14. http://www.eyesolarlux.com/Solar-simulation-energy.htm
15. http://www.peccell.com/pdf/PEC-S20_E.pdf
16. Wang, P.; Klein, C.; Moser, J. E.; Humphrey-Baker, R.; Cevey-Ha, N.-L.; Charvet, R.; Comte, P.; Zakeeruddin, S. M.; Grätzel, M.” Amphiphilic Ruthenium Sensitizer with 4,4’-Diphosphonic Acid-2,2’-bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells”. J. Phys. Chem. B, 2004, 108, 17553
17. B. O’Regand, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”. Nature. 1991, 353, 737
18. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel.” Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium( 11) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”. J. Am. Chem. Soc. 1993, 115, 6382
19. M. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte, and M. Grätzel,”A swift dye uptake procedure for dye sensitized solar cells”. Chem. Comm. 2003, 1456
20. S. G. Yan and J. T. Hupp.” Semiconductor-Based Interfacial Electron-Transfer Reactivity: Decoupling Kinetics from pH-Dependent Band Energetics in a Dye-Sensitized Titanium Dioxide/Aqueous Solution System”. J. Phys. Chem. 1996, 17. 6867
21. http://www.apogeeinstruments.com
22. John F. Endicott, H. Bernard Schlegel, Md. Jamal Uddin, Dhehinie S. Seniveratne.” MLCT excited states and charge delocalization in some ruthenium-ammine-polypyridyl complexes”. Coord. Chem. Rev.2002, 229,95
23. C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, and K.-C. Ho, “A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells”. Angew. Chem. Int. Ed. 2006, 45, 5822
24. C.-Y. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, J.-G. Chen, K.-C. Ho, “A New Route to Enhance the Light-Harvesting Capability of Ruthenium Complexes for Dye-Sensitized Solar Cells”. Adv. Mater. 2007, 115, 6382
25. C.-Y. Chen, J.-Y. Li, C.-H. Tsai, C.-G. Wu, N. Pootrakulchote, L. Alibabaei, C. Ngocle, J.-D. Decoppet, S. M. Zakeeruddin, M. Grätzel .” Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”. ACS Nano. 2009, 3, 3103
26. C.-Y. Chen, J.-G. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, and K.-C. Ho.” Multifunctionalized Ruthenium-Based Supersensitizers for Highly
Efficient Dye-Sensitized Solar Cells” Angew. Chem. Int. Ed. 2008, 120, 7452
27. C.-Y. Chen, N. Pootrakulchote, S.-J. Wu, M. Wang, J.-Y. Li, J.-H. Tsai, C.-G. Wu, S. M. Zakeeruddin, and M. Grätzel.” New Ruthenium Sensitizer with Carbazole Antennas for Efficient and Stable Thin-Film Dye-Sensitized Solar Cells”. J. Phys. Chem. C, 2009, 113, 20753
28. Guogang Xue, Yong Guo, Tao Yu, Jie Guan, Xirui Yu, Jiyuan Zhang, Jianguo Liu, Zhigang Zou.” Degradation Mechanisms Investigation for Long-term Thermal Stability of Dye-Sensitized Solar Cells”. Int. J. Electrochem. Sci. 2012, 7. 1496
29. Lingamallu Giribabu, Varun Kumar Singh, Challuri Vijay Kumar, Yarasi Soujanya, Veerannagari Gopal Reddy, and Paidi Yella Reddy.” Organic-Ruthenium(II) Polypyridyl Complex Based Sensitizer for
Dye-Sensitized Solar Cell Applications”. Adv. OptoElectronics, 2011, 294353
30. C. Klein, Md. K. Nazeeruddin, J. R. Durrant, M. Grätzel.” Engineering of a Novel Ruthenium Sensitizer and Its Application in Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity”. Inorg. Chem., 2005, 44, 178
31. A.Mishra, N. Pootrakulchote, M. K. R. Fischer,a C. Klein, Md. K. Nazeeruddin, S. M. Zakeeruddin, P. Bäuerle and M. Grätzel.” Design and synthesis of a novel anchoring ligand for highly efficient thin film dye-sensitized solar cells”. Chem. Commun., 2009, 7146
32. S.-J. Wu , C.-Y. Chen, J.-Y. Li, C.-G. Wu, J.-G. Chen, and K.-C. Ho.” An efficient light-harvesting ruthenium dye for solar cell application”. Dyes and Pigments. 2010, 84, 95
33. C.-Y. Chen , Nuttapol Pootrakulchote , Min-Yu Chen , Thomas Moehl , Hui-Hsu Tsai , Shaik M. Zakeeruddin , Chun-Guey Wu , and Michael Grätzel.” A New Heteroleptic Ruthenium Sensitizer for Transparent Dye-Sensitized Solar Cells”. Adv. Energy Mater. 2012, 12, 1503
34. S.-R. Jang , J.-H. Yum , C. Klein ,K.-J. Kim , P. Wagner , D. Officer , M. Grätzel , M. K. Nazeeruddin.” High Molar Extinction Coefficient Ruthenium Sensitizers for Thin Film Dye-Sensitized Solar Cells”. J. Phys. Chem. C . 2009 , 113, 7146
35. Piers R. F. Barnes , Kati Miettunen , Xiaoe Li , Assaf Y. Anderson , Takeru Bessho , Michael Grätzel , and Brian C. O’Regan.” Interpretation of Optoelectronic Transient and Charge Extraction Measurements in Dye-Sensitized Solar Cells”. Adv. Mater. 2013, 25, 1881
36. A.Mishra, N. Pootrakulchote, M. K. R. Fischer,a C. Klein, Md. K. Nazeeruddin, S. M. Zakeeruddin, P. Bäuerle and M. Grätzel.” A Thiophene-Based Anchoring Ligand and Its Heteroleptic Ru(II)-Complex for Efficient Thin-Film Dye-Sensitized Solar Cells”. Adv. Funct. Mater. 2011, 963
37. Peng Gao, Hoi Nok Tsao, Michael Gratzel, and Mohammad K. Nazeeruddin.” Fine-tuning the Electronic Structure of Organic Dyes for Dye-Sensitized Solar Cells”. Org. Lett , 2012, 14, 4330
38. Rabi, I.I.; Zacharias, J.R.; Millman, S. and Kusch, P. "A New Method of Measuring Nuclear Magnetic Moment". Phy. Rev. 1938, 53, 318
39. Alessandro Dondoni, Giancarlo Fantin, Marco Fogagnolo, Alessandro Medici, and Paola Pedrini.” Synthesis of (Trimethylsily1)thiazoles and Reactions with Carbonyl Compounds. Selectivity Aspects and Synthetic Utility”. J. Org. Chem. 1988, 53. 1748
40. Alessandro Dondoni, Giancarlo Fantin, Marco Fogagnolo, Alessandro Medici, and Paola Pedrini.”Synthesis of Stannylthiazoles and Mixed Stannylsilylthiazoles and their Use for a Convenient Preparation of Mono- and Bis-halothiazoles”. Synethesis. 1986, 757
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明