博碩士論文 93224016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.144.113.197
姓名 林雅萍(Ya-Ping Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 植物逆境蛋白質基因啟動子與功能分析
(Promoter and functional assay of stress proteins in plants)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物受溫度調控之基因的功能與機制分析★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討
★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析★ 受熱與ABA調控基因AtRZFP33之生理功能分析
★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究
★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析
★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 中文摘要
水稻(Oryza sativa Tainung, No.67)有九個第一族小分子量熱休克蛋白質基因,分別位於第一對及第三對染色體上。位於第三對染色體上的Oshsp17.3及Oshsp18.0基因啟動子以頭對頭的方式共用一個356 bp的啟動子區域。研究顯示Oshsp17.3啟動子具有一段對Aze有專一性的反應元素(azetidine responsive element;AZRE;GTCCTGGACG),當AZRE刪除後,對Aze逆境或熱逆境處理敏感性都有降低的趨勢。為改善對照組測定值過高,故改以阿拉伯芥原生質體暫時表現系統對啟動子不同區域片段進行分析。結果顯示,阿拉伯芥原生質體暫時表現系統對熱逆境或鎘離子逆境誘導的敏感性並不明顯。因此改以穩定轉殖(stable transformation)的方式確認AZRE與啟動子AT-rich片段的角色,將p567(-) (Oshsp17.3啟動子全長)、 p567(-)ΔAZRE (Oshsp17.3刪除AZRE片段)、 p567(+) (Oshsp18.0啟動子全長),以及P1600 (Oshsp16.9A啟動子全長)和P500 (Oshsp16.9A啟動子刪除AT-rich片段),利用農桿菌轉殖入阿拉伯芥中,共獲得33個獨立轉殖株品系。以南方墨點分析法選取單套及雙套轉殖基因套數的轉殖品系,進行水稻第一族小分子量熱休克蛋白質基因之啟動子受逆境誘導分析的實驗。
首先針對不同時期的阿拉伯芥轉殖株進行熱逆境與Aze逆境處理觀察組織表現情形。在兩天大的T2轉殖株,熱逆境處理組及Aze逆境處理組與對照組的組織染色結果皆呈現藍色GUS反應,並無差異表現。14天大的T2轉殖株,p567(+)、p567(-)及p567(-)ΔAZRE的轉殖株,對照組呈微弱或無藍色GUS反應,熱逆境處理組與Aze逆境處理組結果都呈現藍色GUS反應。另方面P1600或P500的熱逆境處理組及Aze逆境處理組與對照組組織染色結果皆呈現明顯藍色GUS反應,無差異表現。一個月大T2轉殖株不同部位逆境處理部份,p567(+)、p567(-)和p567(-)ΔAZRE熱逆境處理後,組織染色結果皆呈現明顯藍色GUS反應,對照組則沒有藍色GUS反應;在Aze逆境處理部分,p567(+)
和p567(-)組織染色結果皆呈現藍色GUS反應;但p567(-)ΔAZRE組織染色
結果則與對照組相同無藍色GUS反應出現。分析結果顯示,五組不同啟動子片段的轉殖株並無不同生長時期組織特異性表現的情形。
接著分析轉殖株受逆境處理誘導後GUS活性表現情形。在轉殖株品系P567(+)及P567(-),給予熱逆境和Aze逆境處理後,GUS活性呈現受此兩逆境誘導而表現;P567(+)ΔAZRE給予熱逆境處理後,GUS活性分析顯示轉殖株受熱逆境誘導敏感性不大,給予Aze逆境處理,GUS活性幾乎不受Aze逆境誘導而表現。另方面,在P500的獨立轉殖株品系,GUS活性完全不受熱逆境與Aze逆境誘導而表現。而P1600的獨立轉殖株品系GUS活性受熱逆境誘導而表現,但對Aze逆境處理而誘導的敏感性幾乎沒有反應。本實驗與先前利用基因槍方式對啟動子不同片段區域進行分析結果相近。
最後分別將水稻第一族小分子量熱休克蛋白質基因Oshsp16.9A及大麥(Hordeum vulgare L.)的第三群LEA蛋白質基因HVA1抗逆境基因送入蝴蝶蘭中,期能利用這兩類逆境蛋白質的生理功能增加蝴蝶蘭(Phalaenopsis sp.)對環境逆境的抗性。蝴蝶蘭轉殖工作目前已初步完成,後續兩逆境相關基因Oshsp16.9A及HVA1蛋白質功能性的分析有待進一步的研究來闡明其扮演的角色。
摘要(英) Abstract
There are 9 members of the class I small heat shock proteins (sHSP-CI) gene family in rice (Oryza sativa L. cv. Tainong No.67), of which on chromosome 1 and chromosome 3. Interestingly, Oshsp17.3 and Oshsp18.0 on chromosome 3 are linked head-to-head and share a 356-bp putative bi-directional promoter. A possible azetidine (Aze)-responsive element (AZRE;GTCCTGGACG) on Oshsp17.3 promoter was found to be capable of directing expression in response to Aze treatment. The truncation of AZRE decreased the induction of both Aze induction and heat shock (HS) induction. To improve high control value, we constructed a transient expression system using Arabidopsis protoplast to assay Oshsp17.3 promoter. The results showed that there was not significant difference for HS induction and Cd induction. So we use stable transformation to confirm the role of AZRE and AT-rich region. Five constructs ( p567(-): full length of Oshsp17.3 promoter; p567(-)ΔAZRE: AZRE truncation of Oshsp17.3 promoter; p567(+): full length of Oshsp18.0 promoter; P1600: full length of Oshsp16.9A promoter; P500: AT-rich region truncation of Oshsp16.9A promoter) were generated and introduced into Arabidopsis plants via Agrobacterium. Totally 33 independent lines were constructed for further study. The copy number of transgene was estimated by southern-blot hybridization. One or two copies of transgenic independent line was selected and characterized under stress.
Different stage of Arabidopsis transgenic plants were exposed to HS and Aze treatment for histochemical analysis. Two-day-old seedlings and of control and transgenic plants showed constitutive blue GUS staining under stress. Analysis of 14-day-old seedlings revealed that p567(+), p567(-), and p567(-)ΔAZRE of T2 transgenic plants showed blue GUS staining under HS and Aze stress, but no or less
detectable blue GUS staining was found under normal growth conditions. On the other hand, P1600 and P500 transgenic plants showed dominant blue GUS staining under HS and Aze stress. For analysis of one-month-old seedlings of T2 transgenic plants, all tissues in p567(+) and p567(-) have blue GUS staining under HS and Aze treatment. In contrast, blue GUS staining was detected in HS treated p567(-)ΔAZRE but not in Aze treated p567(-)ΔAZRE.
Analysis of GUS activity of the transgenic plants in response to stress induction indicated that GUS activity of p567(+) and p567(-) increased under HS and Aze treatment. In contrast, p567(-)ΔAZRE showed low expression level of GUS activity under HS stress, and GUS activity was not detected in Aze treated p567(-)ΔAZRE transgenic plants. On the other hands, as we would expect that P1600 showed GUS activity in response to HS but no GUS activity under Aze treatment. Besides, no GUS activity was detected in P500 under HS and Aze stress. Therefore we confirm the role of AZRE on the sHSP-CIs promoter using in vivo system.
To improve stress tolerance of Phalaenopsis sp. to environmental stresses, we also try to transform stress genes into this important flower plants in Taiwan. A rice sHSP-CI gene (Oshsp16.9A) and a barley (Hordeum vulgare L.) group 3 LEA protein gene (HVA1) were introduced into Phalaenopsis via Agrobacterium. The works for gene transformation into Phalaenopsis were accomplished. Analysis of stress tolerance conferred by Oshsp16.9A and HVA1 in Phalaenopsis needs further study to characterize in the future.
關鍵字(中) ★ 水稻第一族小分子量熱休克蛋白質 關鍵字(英) ★ SHSP-CI
★ AZ
論文目次 目錄
中文摘要 ……………………………………………………………………… i
英文摘要 ……………………………………………………………………... iii
圖目錄 ……………………………………………………………………......... v
縮寫對照表 …………………………………………………………………….vii
前言 …………………………………………………………………………… 1
一. 熱休克蛋白質與熱休克反應 ……………………………………………. 1
二. 研究起源與目的 …………………………………………………………. 5
研究材料與方法 ……………………………………………………………… 9
一. 水稻第一族小分子量熱休克蛋白質基因啟動子之分析 ……………… 9
(一) 原生質體暫時表現系統 ………………………………………………… 9
(二) 阿拉伯芥轉殖株的分析 ……………………………………………….. 15
二. 蝴蝶蘭基因轉殖與分析 ………………………………………………... 28
(一). 轉殖質體DNA的建構及大腸桿菌的轉型 …………………………... 28
(二) 轉殖質體DNA的抽取 ………………………………………………… 35
(三) 蝴蝶蘭的轉殖 …………………………………………………………... 36
結果 ………………………………………………………………………….... 41
討論 …………………………………………………………………………....50
參考文獻 …………………………………………………………………….... 59
圖表 ……………………………………………………………………………. 66
附錄 ……………………………………………………………………………. 84
參考文獻 參考文獻
蔡瑩霏1998.胺基酸類似物及酒精逆境對大豆白化幼苗熱休克蛋白質基因表現之影響。國立台灣大學植物學研究所碩士論文。
黃仲義2002.篩選和鑑定水稻第一族低分子量熱休克蛋白質基因的新成員。國立台灣大學植物學研究所碩士論文。
官建洲2005.水稻第一族低分子量熱休克蛋白質基因群之研究:基因之鑑定、表現及調節。國立台灣大學植物學研究所博士論文。
林佩怡2003.番茄Lehsc70-3基因啟動子活性之定量分析。國立清華大學生命科學系碩士論文。
Almoguera C, Dapena PP, Jordano J (1998) Dual regulation of heat shock promoter during embryogenesis: stage dependent role of heat shock elements. Plant J. 13(4): 437-446.
Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J. 13: 519-527.
Bardwell JCA, Craig EA (1987) Major heat shock gene of Drosophila and Escherichia coli heat inducible dnaK gene are homologus. Proc. Natl. Acad. Sci. USA 84: 5177-5181.
Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell AM (1993) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode aphelenchus avenae. Plant J. 3: 363-369.
Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in arabidopsis. Plant Physiol. 129: 661-677.
Coca MA, Almoguera C, Thomas TL, Jordano J (1996) Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol. Biol. 31: 863-876.
Czarnecka E, Key JL, Gurley WB (1989) Regulatory domain of the Gmhsp17.5-E heat shock promoter of soybean. Mol. and Cellular Biol. 9: 3457-3463.
Desikan R, Cheung MK, Bright J, Neil SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot. 55: 205-212.
Desikan R, Mackerness1 SAH, Hancock JT, Neill SJ (2001) Regulation of the arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159-172.
Edelman L, Czarnecka E, Key JL (1988) Induction and accumulation of heat shock-specific poly(A+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. Plant Physiol. 86: 1048-1056.
Guan JC, Jinn TL, Yeh CH, Feng SP, Lin CY (2004) Characterization of the genomic structures and selective expression pro.les of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol. Biol. 56: 795-809.
Haralampidis K, Milioni D, Rigas S, Hatzopoulos P (2002) Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 genes. Plant Physiol. 129: 1138-1149.
Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkaul S, Buchner J (2004) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J. 23:638-649.
Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 29: 637-646.
Hong B, Barg R, Ho THD (1992) Developmental and organ-specific expression of an ABA-and stress-induced pretein in barley. Plant Mol. Biol. 18: 663-674.
Hsieh MH, Chen JT, Jinn TL, Chen YM, Lin CY (1992) A class of soybean low molecular weight heat shock proteins. Plant Physiol. 99: 1279-1284.
Jinn TL, Chang PFL, Chen YM, Key JL, Lin CY (1997) Tissue-type-specific heat-shock response and lmmunolocalization of class I low-molecular-weight -heat-shock proteins in soybean. Plant Physiol. 114: 429-438.
Jinn TL, Chen CC, Lin CY (2004) Azetidine-induced of class I small heat protein in the soluble fraction provide thermotolerance in soybean seedlings. Plant Cell Physiol. 45(12): 1759-1767.
Jinn TL, Chen YM, Lin CY (1995) Characterization and physiological function of class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physiol. 108: 639-701.
Kuo HF, Tsai YE, Young LS, Lin CY (2000) Ethanol treatment triggers a heat shock-like response but no thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. Plant Cell Environ. 23: 1099-1108.
Lee BH, Won SH, Lee HS, Mijao M, Chung WI, Kim IJ, Jo J (2002) Expression of the chroroplast localized small heat shock protein by oxidative stress in rice. Gene 245: 283-290.
Lee GJ, Pokala N, Vierling E (1995) Structure and in vivo molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270: 10432-10438.
Lee YL, Chang PFL, Yeh KW, Jinn TL, Kung CCS, Lin WC, Chen YM, Lin CY (1995) Cloning and characterization of a cDNA encoding an 18.0-kDa class-I low-molecular-weight heat-shock protein from rice. Gene. 165: 223-227.
Lee YRJ, Nagao RT, Lin CY, Key JL (1996) Induction and regulation of heat-shock gene expression by an amino acid analog in soybean seedlings. Plant Physiol. 110: 241-248.
Luo S, Lee AS (2002) Requirement of the p38 mitogen-activated protein kinase signalling pathway for the induction of the 78 kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein by azetidine stress : activating transcription factor 6 as a target for stress-induced phosphorylation. Biochem. J. 366: 787-795.
Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol. 141: 47-60.
Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 48: 667-681.
Maqbool S, Zhong H, El-Maghraby Y, Ahmad A, Chai B, Wang W, Sabzikar R, Sticklen B (2002) Competence of oat ( Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. Theor. Appl. Genet.105: 201-208.
Moriwaki M, Yamakawa T (1999) Delayed recovery of β-glucuronidase activity driven by an Arabidopsis heat shock promoter in heat -stress transgenic Nicotiana plumbaginifolia. Plant Cell 19: 96-100.
Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437-496.
Prändl R, Kloske E, Schöffl F (1995) Developmental regulation and tissue-specific differences of heat shock gene expression in transgenic tobacco and Arabidopsis plants. Plant Mol. Biol. 28: 73-82.
Rojas A, Almoguera C, Carranco R, Scharf KD, Jordano J (2002) Selective activation of the developmentally regulated Ha hsp17.6 G1 promoter by heat stress transcription factors. Plant Physiol. 129: 1207-1215.
Sabehat A, Lurie S, Weiss D (1998) Expression of small heat-shock proteins at low temperatures. Plant Physiol. 117: 651-658.
Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing crystalline domains (Acd proteins). Cell stress Chaperon. 6: 225-237.
Schöffl F, Prandl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol. 117: 1135-1141.
Shen QJ, Casaretto JA, Zhang P, Ho THD (2004) Functional definition 0f ABA-response complexes: the promoter units necessary and sufficient for ABA induction of gene expression in barley (Hordeum Vulgare L.). Plant Mol. Biol. 54: 111-124.
Shin R, Kim MJ, Paek KH (2003) The CaTin1 (Capsicum annuum TMV-induced Clone 1) and CaTin1-2 genes are linked head-to-head and share a bidirectional promoter. Plant Cell Physiol. 44: 549-554.
Soto A, Allona I, Collada C, Guevara MA, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120: 521-528.
Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta. 1577: 1-9.
Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the arabidopsis Hsp70 gene family. Plant Physiol. 126: 789-800.
Tsukaya H, Takahashi T, Naito S, Komeda Y (1993) Floral organ-specific and constitutive expression of an Arabidopsi thaliana heat shock HSP18.2:: GUS fusion gene is retained even after homeotic conversion of flowers by mutation. Mol Gen Genet 237: 26-32.
Van Montfort RLM, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8: 1025-1030.
Vierling E. (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620.
Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 112: 747-757.
Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 122: 1099-1108.
Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257.
Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of late embryogenesis Abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257.
Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress:evolution of osmolyte systems. Science 217: 1214-1222.
Yeh CH, Chang PF L, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9-KDa heat shock protein, Oshsp 16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. USA 94: 10967-10972.
Yeh CH, Yeh KW, Wu SH, Chang PFL, Chen YM, Lin CY (1995) A recombinant rice 16.9-kDa heat shock protein can provide thermoprotection in vitro. Plant Cell Physiol. 36(7): 1341-1348.
指導教授 葉靖輝(Ching-Hui Yeh) 審核日期 2006-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明