博碩士論文 108324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.221.174.248
姓名 洪佩芝(Pei-Chih Hung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 改質聚乳酸奈米纖維以促進親水性藥物之持續釋放
(Modification of Electrospun Polylactic Acid Nanofibers to Sustain Hydrophilic Drug Delivery)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 慢性傷口因癒合時間較長,需要開發抗菌敷料來避免感染風險。聚乳酸(PLA)為常見敷料材料,具有可降解性以及生物相容性,然而其疏水性使其不易包覆藥物及持續釋放,因此本研究將介孔二氧化矽奈米粒子(MSN)混入PLA進行電紡絲,以用於裝載抗生素去氧羥四環素(DCH)。透過測試發現MSN的加入不但能夠增加纖維的熱穩定性也能增加機械強度,且纖維具有高透氣性,可以有效保護傷口。經由溶脹率實驗結果了解到MSN結構上的氫氧基能增加親水性,使得溶脹率提高,此特性不但能促進傷口滲出液的吸收,也有助於改善纖維的高疏水性。因此在藥物釋放實驗中,DCH的釋放會隨著MSN在纖維中的比例而提升。其中D-P-M12會造成初始爆發釋放,因此對成纖維細胞造成明顯毒性,但此毒性並未在其他載藥複合纖維發現。最後,在抗菌實驗中證實,雖然D-P-M12的初始爆發釋放使其在紙錠擴散實驗中擁有最大的抗菌抑制區,但其效果會隨時間下降,相較之下,D-P-M10組即使到了第四天都可以維持99%的抗菌效果,因此考量到穩定的抗菌能力及不會影起細胞毒性,D-P-M10纖維極具成為慢性傷口敷料的潛力。
摘要(英) Considering the long healing time of chronic wounds, it is necessary to develop antibacterial dressings to avoid the risk of infection. Polylactic acid (PLA) is a frequently investigated dressing material due to its biodegradability and biocompatibility. However, its hydrophobicity makes it difficult to load drugs for sustained release. Therefore, in this study, mesoporous silica nanoparticles (MSN) were mixed with PLA to electrospin composite nanofibers for loading doxycycline hyclate (DCH), an antibiotic. These fibers owned high permeability. In addition, the added MSN not only increased thermal stability but also reinforced composite nanofibers, suggesting that composite fibers were suitable to physically protect wounds. The hydroxyl groups on MSNs increased the hydrophilicity to enhance the swelling rates of composite fibers, which not only promoted the absorption of wound exudate but also improved wettability of the composite nanofiber. Therefore, the release experiments showed that DCH delivery increased with the ratio of MSN in the composite nanofibers. Among them, D-P-M12 demonstrated an initial burst release, which thus significantly reduced proliferation rates of fibroblasts. However, other composite fibers did not occur this difficulty. Regrading antibacterial effects, D-P-M12 owned the largest inhibition zone in disc-diffusion experiments due to its initial burst release, but its antibacterial efficiency decreased over time. In contrast, the D-P-M10 group maintained 99% of antibacterial effects for 4 days. Therefore, D-P-M10 fibers were potential dressings for chronic wounds due to its stable antibacterial ability without causing cytotoxicity.
關鍵字(中) ★ 聚乳酸奈米纖維
★ 親水性藥物
★ 持續釋放
關鍵字(英) ★ Poly(lactic acid) nanofibers
★ Hydrophilic drug
★ Sustained release
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 慢性傷口 5
2-1-1 糖尿病傷口修復 5
2-2 電紡絲 8
2-2-1電紡絲原理 8
2-2-2 電紡絲在傷口敷料之應用 10
2-3 聚乳酸 11
2-3-1 聚乳酸之簡介 11
2-3-2聚乳酸之性質 12
2-3-3 聚乳酸在傷口敷料之應用 13
2-4藥物輸送 15
2-4-1藥物釋放從載藥電紡絲釋放的動力學 16
2-4-2 改善疏水性材料的釋放特性 18
2-5 介孔二氧化矽奈米粒子 22
2-5-1 介孔二氧化矽奈米粒子之簡介 22
2-5-2 介孔二氧化矽奈米粒子之合成 22
2-5-3介孔二氧化矽奈米粒子之應用 24
2-6去氧羥四環素 26
2-6-1 去氧羥四環素之簡介 26
2-6-2 去氧羥四環素之特性 27
2-6-3 去氧羥四環素在慢性傷口之應用 28
第三章 材料與方法 30
3-1 實驗材料 30
3-2 實驗儀器 32
3-3 實驗方法 34
3-3-1 介孔二氧化矽奈米粒子合成 34
3-3-2 電紡絲溶液製備 35
3-3-3 電紡絲纖維製備 38
3-3-4 SEM之樣本製備 39
3-3-5 TEM之樣本製備 41
3-3-6 SAXS/TGA/DSC之樣本製備 41
3-3-7 FTIR樣本製備 41
3-3-8 萬能拉伸試驗機樣本製備 41
3-3-9 電紡絲纖維溶脹率(Swelling ratio) 43
3-3-10 電紡絲纖維水蒸氣穿透率(Water Vapor Transmission rate, WVTR) 43
3-3-11 藥物釋放實驗 44
3-3-12 抗菌實驗 45
3-3-13 NIH 3T3細胞培養 48
3-3-14 細胞存活率實驗(MTT assay) 53
第四章 結果與討論 55
4-1 介孔二氧化矽奈米粒子合成之鑑定 55
4-1-1 介孔二氧化矽奈米粒子形態及結構鑑定 55
4-2 聚乳酸/介孔二氧化矽/去氧羥四環素之複合奈米電紡絲性質 58
4-2-1複合電紡絲形態與直徑分布 58
4-2-2複合電紡絲之SAXS分析 61
4-2-3複合電紡絲之熱分析 62
4-2-4複合電紡絲之FTIR分析 64
4-2-5複合電紡絲之機械性質分析 66
4-2-6 複合纖維之溶脹率 68
4-2-7 複合纖維之水蒸氣穿透率(WVTR) 70
4-3複合電紡絲之藥物釋放曲線 71
4-4 複合電紡絲對細胞之影響 73
4-4-1 細胞培養於複合纖維上之SEM圖 73
4-4-2 細胞培養於複合纖維上之增生率 75
4-5電紡絲之抗菌活性 77
4-5-1固態培養之抗菌活性 77
4-5-2 液態培養之抑菌率 79
第五章 結論 81
第六章 參考資料 84
參考文獻 1. Strodtbeck, F., Physiology of wound healing. Newborn and Infant Nursing Reviews, 2001. 1(1): p. 43-52.
2. Lisovsky, A., Chamberlain, M.D., Wells, L.A., and Sefton, M.V., Cell interactions with vascular regenerative MAA-based materials in the context of wound healing. Advanced Healthcare Materials, 2015. 4(16): p. 2375-2387.
3. Samartzis, E.P., Fink, D., Stucki, M., and Imesch, P., Doxycycline reduces MMP-2 activity and inhibits invasion of 12Z epithelial endometriotic cells as well as MMP-2 and -9 activity in primary endometriotic stromal cells in vitro. Reproductive Biology and Endocrinology 2019. 17(1): p. 38-47.
4. Yang, S., Li, X., Liu, P., Zhang, M., Wang, C., and Zhang, B., Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual-drug release for wound-healing applications. ACS Biomaterials Science & Engineering, 2020. 6(8): p. 4666-4676.
5. Ribba, L., Tamayo, L., Flores, M., Riveros, A., Kogan, M.J., Cerda, E., and Goyanes, S., Asymmetric biphasic hydrophobic/hydrophilic poly(lactic acid)-polyvinyl alcohol meshes with moisture control and noncytotoxic effects for wound dressing applications. Journal of Applied Polymer Science, 2019. 136(17): p. 47369-47374.
6. Asefa, T. and Tao, Z., Biocompatibility of mesoporous silica nanoparticles. Chemical Research in Toxicology, 2012. 25(11): p. 2265-2284.
7. Chin, J.S., Madden, L., Chew, S.Y., and Becker, D.L., Drug therapies and delivery mechanisms to treat perturbed skin wound healing. Advanced Drug Delivery Reviews 2019. 149-150: p. 2-18.
8. R., D. and C., B., The proteolytic environment of chronic wounds. Wound Repair and Regeneration, 1999. 7: p. 433–441.
9. Esteve, P.O., Chicoine, E., Robledo, O., Aoudjit, F., Descoteaux, A., Potworowski, E.F., and St-Pierre, Y., Protein kinase C-zeta regulates transcription of the matrix metalloproteinase-9 gene induced by IL-1 and TNF-alpha in glioma cells via NF-kappa B. Journal of Biological Chemistry 2002. 277(38): p. 35150-35155.
10. Li, Y., Han, Y., Wang, X., Peng, J., Xu, Y., and Chang, J., Multifunctional hydrogels prepared by dual ion cross-linking for chronic wound healing. ACS Applied Materials & Interfaces, 2017. 9(19): p. 16054-16062.
11. Wiegand, C., Heinze, T., and Hipler, U.C., Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair and Regeneration 2009. 17(4): p. 511-521.
12. Maneerung, T., Tokura, S., and Rujiravanit, R., Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 2008. 72(1): p. 43-51.
13. Abdelhady, S., Honsy, K.M., and Kurakula, M., Electro spun- nanofibrous mats: a modern wound dressing matrix with a potential of drug delivery and therapeutics. Journal of Engineered Fibers and Fabrics, 2015. 10(4): p. 179-193.
14. Fang, J., Niu, H., Lin, T., and Wang, X., Applications of electrospun nanofibers. Science Bulletin, 2008. 53(15): p. 2265-2286.
15. Zhao, J., Han, W., Chen, H., Tu, M., Zeng, R., Shi, Y., Cha, Z., and Zhou, C., Preparation, structure and crystallinity of chitosan nano-fibers by a solid–liquid phase separation technique. Carbohydrate Polymers, 2011. 83(4): p. 1541-1546.
16. Zheng, Z., Chen, P., Xie, M., Wu, C., Luo, Y., Wang, W., Jiang, J., and Liang, G., Cell environment-differentiated self-assembly of nanofibers. Journal of the American Chemical Society, 2016. 138(35): p. 11128-11131.
17. Dhandayuthapani, B., Yoshida, Y., Maekawa, T., and Kumar, D.S., Fabrication and characterization of nanofibrous scaffold developed by electrospinning. Materials Research, 2011. 14(3): p. 317-325.
18. Keirouz, A., Chung, M., Kwon, J., Fortunato, G., and Radacsi, N., 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdisciplinary Reviews - Nanomedicine and Nanobiotechnology, 2020. 12(4): p. 1626-1657.
19. Liao, S., Li, B., Ma, Z., Wei, H., Chan, C., and Ramakrishna, S., Biomimetic electrospun nanofibers for tissue regeneration. Biomedical Materials, 2006. 1(3): p. R45-53.
20. Avérous, L., Polylactic acid: synthesis, properties and applications. Monomers, Polymers and Composites from Renewable Resources 2008: p. 433-450.
21. Drumright, R.E., Gruber*, P.R., and Henton, D.E., Polylactic acid technology. Advanced Materials Research, 2000. 12(23): p. 1841-1846.
22. Lv, T., Zhou, C., Li, J., Huang, S., Wen, H., Meng, Y., and Jiang, S., New insight into the mechanism of enhanced crystallization of PLA in PLLA/PDLA mixture. Journal of Applied Polymer Science, 2018. 135(2): p. 45663-45669.
23. Cui, M., Liu, L., Guo, N., Su, R., and Ma, F., Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid). Molecules, 2015. 20(1): p. 595-607.
24. Casasola, R., Thomas, N.L., Trybala, A., and Georgiadou, S., Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 2014. 55(18): p. 4728-4737.
25. Luddee, M., Pivsa-Art, S., Sirisansaneeyakul, S., and Pechyen, C., Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites. Energy Procedia, 2014. 56: p. 211-218.
26. Zhao, X., Sui, K.Y., Liang, H.C., Li, Y.J., Zhang, Y., and Xia, Y.Z., Preparation of the amphiphilic copolymer of poly(ethyleneoxid-co-glycidol)-graft-Poly(lactide) and their extraction for dyes. Advanced Materials Research, 2012. 482-484: p. 1912-1916.
27. Abdal-Hay, A., Hussein, K.H., Casettari, L., Khalil, K.A., and Hamdy, A.S., Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications. Materials Science and Engineering: C 2016. 60: p. 143-150.
28. Bi, H., Feng, T., Li, B., and Han, Y., In vitro and In vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing. Polymers, 2020. 12(4): p. 839-851.
29. Xue, J., Wu, T., Dai, Y., and Xia, Y., Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev, 2019. 119(8): p. 5298-5415.
30. Felgueiras, H.P. and Amorim, M.T.P., Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf B Biointerfaces, 2017. 156: p. 133-148.
31. F, S.F., A, K., and O., A., Poly (lactic acid) nano-fibers as drug-delivery systems: opportunities and challenges. Nanomedicine Research Journal, 2019. 4: p. 130-140.
32. Singhvi, G. and Singh, M., Review: In vitro drug release characterization models. International Journal of Pharmaceutical Studies and Research, 2011. 2: p. 77-84.
33. Bruschi, M.L., Mathematical models of drug release, in Strategies to Modify the Drug Release from Pharmaceutical Systems, M.L. Bruschi, Editor. 2015. p. 63-86.
34. Tan, M.L., Choong, P.F., and Dass, C.R., Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides, 2010. 31(1): p. 184-193.
35. Yuan, Y., Choi, K., Choi, S.-O., and Kim, J., Early stage release control of an anticancer drug by drug-polymer miscibility in a hydrophobic fiber-based drug delivery system. RSC Advances, 2018. 8(35): p. 19791-19803.
36. Moradkhannejhad, L., Abdouss, M., Nikfarjam, N., Shahriari, M.H., and Heidary, V., The effect of molecular weight and content of PEG on in vitro drug release of electrospun curcumin loaded PLA/PEG nanofibers. Journal of Drug Delivery Science and Technology, 2020. 56: p. 101554-101564.
37. YU, H.-y., QIN, Z.-y., and ZHOU, Z., Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Progress in Natural Science: Materials International, 2011. 21(6): p. 478-484.
38. Chen, G.Q. and Wu, Q., The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 2005. 26(33): p. 6565-6578.
39. Suwalski, A., Dabboue, H., Delalande, A., Bensamoun, S.F., Canon, F., Midoux, P., Saillant, G., Klatzmann, D., Salvetat, J.P., and Pichon, C., Accelerated achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials, 2010. 31(19): p. 5237-5245.
40. Yannan Zhao, B.G.T., Igor I. Slowing, and Victor S.-Y. Lin*, Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. Journal of the American Chemical Society, 2009. 131: p. 8398-8400.
41. Hoffmann, F., Cornelius, M., Morell, J., and Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie International Edition, 2006. 45(20): p. 3216-3251.
42. Lu, J., Liong, M., Zink, J.I., and Tamanoi, F., Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 2007. 3(8): p. 1341-1346.
43. He, Q., Zhang, Z., Gao, Y., Shi, J., and Li, Y., Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small, 2009. 5(23): p. 2722-2729.
44. Zhu, Y., Song, F., Ju, Y., Huang, L., Zhang, L., Tang, C., Yang, H., and Huang, C., NAC-loaded electrospun scaffolding system with dual compartments for the osteogenesis of rBMSCs in vitro. International Journal of Nanomedicine, 2019. 14: p. 787-798.
45. Pergal, M.V., Brkljačić, J., Tovilović-Kovačević, G., Špírková, M., Kodranov, I.D., Manojlović, D.D., Ostojić, S., and Knežević, N.Ž., Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. Progress in Organic Coatings, 2021. 151: p. 106049-106061.
46. Tong, L., Pu, Z., Chen, Z., Huang, X., and Liu, X., Effect of nanosilica on the thermal, mechanical, and dielectric properties of polyarylene ether nitriles terminated with phthalonitrile. Polymer Composites, 2014. 35(2): p. 344-350.
47. Kogawa, A.C. and SALGADO, H.R.N., Doxycycline hyclate:a review of properties, applications and analytical methods. nternational Journal of Life science and Pharma Research, 2012. 2(4): p. 11-25.
48. Stechmiller, J., Cowan, L., and Schultz, G., The role of doxycycline as a matrix metalloproteinase inhibitor for the treatment of chronic wounds. Biological Research For Nursing 2010. 11(4): p. 336-344.
49. Engebretson, S.P. and Hey-Hadavi, J., Sub-antimicrobial doxycycline for periodontitis reduces hemoglobin A1c in subjects with type 2 diabetes: a pilot study. Pharmacological Research, 2011. 64(6): p. 624-629.
50. Gloria A. Chin, M., MS; Tera G. Thigpin; Karen J. Perrin, BSN, ARNP; Lyle L. Moldawer, PhD; Gregory S. Schultz, PhD, Treatment of chronic ulcers in diabetic patients with a topical metalloproteinase inhibitor, doxycycline. Wounds: A Compendium of Clinical Research and Practice, 2003: p. 315-323.
51. Cui, S., Sun, X., Li, K., Gou, D., Zhou, Y., Hu, J., and Liu, Y., Polylactide nanofibers delivering doxycycline for chronic wound treatment. Materials Science and Engineering: C 2019. 104: p. 109745-109753.
52. Shen, D., Yang, J., Li, X., Zhou, L., Zhang, R., Li, W., Chen, L., Wang, R., Zhang, F., and Zhao, D., Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Letters 2014. 14(2): p. 923-932.
53. Song, B., Wu, C., and Chang, J., Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomaterialia 2012. 8(5): p. 1901-1907.
54. Li, J., Shen, S., Kong, F., Jiang, T., Tang, C., and Yin, C., Effects of pore size on in vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC Advances, 2018. 8(43): p. 24633-24640.
55. Marosfoi, B.B., Szabó, A., Marosi, G., Tabuani, D., Camino, G., and Pagliari, S., Thermal and spectroscopic characterization of polypropylene-carbon nanotube composite. Journal of Thermal Analysis and Calorimetry, 2006. 86: p. 669-673.
56. Lu, W., Cui, R., Zhu, B., Qin, Y., Cheng, G., Li, L., and Yuan, M., Influence of clove essential oil immobilized in mesoporous silica nanoparticles on the functional properties of poly(lactic acid) biocomposite food packaging film. Journal of Materials Research and Technology, 2021. 11: p. 1152-1161.
57. Chieng, B.W., Azowa, I.N., Wan Md Zin, W.Y., and Hussein, M.Z., Effects of graphene nanopletelets on poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites. Advanced Materials Research, 2014. 1024: p. 136-139.
58. Paramanantham, P., Antony, A.P., Sruthil Lal, S.B., Sharan, A., Syed, A., Ahmed, M., Alarfaj, A.A., Busi, S., Maaza, M., and Kaviyarasu, K., Antimicrobial photodynamic inactivation of fungal biofilm using amino functionalized mesoporus silica-rose bengal nanoconjugate against Candida albicans. Scientific African, 2018. 1: p. e00007-00023.
59. Junejo, Y. and Safdar, M., Highly effective heterogeneous doxycycline stabilized silver nanocatalyst for the degradation of ibuprofen and paracetamol drugs. Arabian Journal of Chemistry, 2019. 12(8): p. 2823-2832.
60. Chen, S., Liu, B., Carlson, M.A., Gombart, A.F., Reilly, D.A., and Xie, J., Recent advances in electrospun nanofibers for wound healing. Nanomedicine 2017. 12: p. 17-34.
61. Jannesari, M., Varshosaz, J., Morshed, M., and Zamani, M., Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. International Journal of Nanomedicine, 2011. 6: p. 993-1003.
62. Cellet, T.S.P., Pereira, G.M., Muniz, E.C., Silva, R., and Rubira, A.F., Hydroxyapatite nanowhiskers embedded in chondroitin sulfate microspheres as colon targeted drug delivery systems. Journal of Materials Chemistry B 2015. 3(33): p. 6837-6846.
63. Baishya, H., Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. Journal of Developing Drugs, 2017. 06(02): p. 1000171-1000178.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2021-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明