博碩士論文 105226601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:13.58.244.216
姓名 黃尼哥(Aloysius Niko)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 鈦擴散型鈮酸鋰波導絕熱耦合器作為電光寬頻 偏振態開關器之研究
(Study on Titanium In diffused Lithium Niobate Waveguide Adiabatic Couplers as Electro-Optic Broadband Polarization Mode Switches)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,使用光學系統,尤其是集成電路 (IC) 的數字通信設備的增長已成為主要關注點。為了在光子電路芯片中創建快速、寬帶和可調諧的光開關,研究了“絕熱耦合器的寬帶無源元件”和“有源窄帶EOPMC”的集成。使用 Ti 中 TE 和 TM 偏振基模絕熱光傳輸的寬帶偏振分束器:在擴散 (LiNbO3) 波導和基於 Ti:PPLN 波導的窄帶但可調諧的有源電光偏振模式轉換將導致單芯片上的可調諧寬帶有源模式偏振模式開關。
在這項研究中,寬帶可調諧 EO 開關器件在 50 毫米長、20 毫米寬和 0.5 毫米厚的 z 切割 LiNbO3 芯片中使用熱擴散法和電場極化技術製造,23 µm 光柵週期。 AAC 部分設計為與波長無關且高偏振消光比 (PER) 偏振分束器 (PBS),當沿晶體學施加外部電場時,EOPMC 可以在 TE 和 TM 偏振模式之間轉換Ti:PPLN 在 EO 係數 r51 處的 y 軸。我們的目標是通過主動調諧任一偏振的輸入偏振波來實現寬帶偏振模式切換,以便由於絕熱耦合器的高耦合效率而確定輸出偏振波。該實驗也在較寬的溫度和波長下進行。
有源開關的測量結果與仿真過程具有良好的擬合效果。轉換效率/耦合效率也可高達 96%,帶寬約為 2.7 nm,接近無源開關的結果 (98%)。這種獨特的器件可在 20 V 的低驅動電壓下工作,並且還顯示出寬溫度範圍,在 TE 和 TM 偏振的寬波長范圍內具有調諧速率 dλ/ dT = -1 nm
摘要(英) In recent years, the growth of digital communications devices using optical systems, especially with Integrated Circuits (IC), has become the main interest. To create fast, broadband, and tunable optical switch in a photonic circuit chip, the research to integrate the “broadband passive elements of Adiabatic Coupler” and the “active narrowband EOPMC” has been studied. Using the broadband polarization beam splitter of the adiabatic light transfer of TE- and TM-polarized fundamental modes in Ti: In diffused (LiNbO3) waveguides and narrowband but tunable active electro-optical polarization mode conversion based on a Ti:PPLN waveguide will lead to tunable broadband active mode polarization mode switch on a single chip.
In this study, the broadband tunable EO switch device is fabricated in a 50-mm long, 20-mm wide, and 0.5-mm thick z-cut LiNbO3 chip using the thermal in: diffusion method and electric-field poling technique with a 23 µm grating period. The AAC part is designed to work as a wavelength-independent and high polarization-extinction-ratio (PER) polarization beam splitter (PBS), then EOPMC could convert between TE and TM-Polarized modes when an external electric field is applied along the crystallographic y-axis of the Ti:PPLN at EO coefficient r51. Our goal is to achieve the broadband polarization mode switches by actively tuning the input polarization wave for either polarization so that the output polarization wave could be determined as a result of the high coupling efficiency of adiabatic couplers. The experiment also has been done in broad temperature and wavelength.
The measurement result of the active switch had a good-fitting result with the simulation process. The conversion efficiency/coupling efficiency also can reach as high as 96% with ~2.7 nm bandwidth which is close to the passive switch’s result (98%). This unique device works at a low driving voltage of 20 V and also shown a broad temperature range with tuning rate dλ/ dT = -1 nm over broad wavelength for both TE and TM polarization.
關鍵字(中) ★ 絕熱光傳遞
★ 電光開關
★ 偏振模轉換器
關鍵字(英) ★ adiabatic light transfer
★ Electro-optic switch
★ polarization mode converter
論文目次 Table of Contents
摘要 ii
Abstract iii
Acknowledgment iv
Table of Contents vi
Table of Figures viii
Chapter 1 Introduction 1
1-1 Integrated Optics Overview 3
1-2 Brief Introduction of An Adiabatic Coupler 3
1-3 Study in Nonlinear Optics and Linear Electro-Optic Effect 4
1-4 Previous Works and Goals 5
1-5 Summary of contents 7
Chapter 2 Principles and Theoretical Background 8
2-1 LiNbO3 Crystals and Devices 8
2-1-1 History of LN 8
2-1-2 Growing Methods of LN 8
2-2 Ti-diffused Waveguides (Ti:LN) 9
2-3 Electro-Optic (EO) Effect on LN and Electro-Optic Polarization Mode Converter (EOPMC) 10
2-3-1 EO Effect in LN (Anisotropic Media) 11
2-3-2 EO Polarization Mode Converter (EOPMC) 12
2-3-2-1 Quasi Phase Matching (QPM) 12
2-3-2-2 QPM on PPLN to EO Effect 13
2-3-3 EOPMC as Solc filter 16
2-4 Waveguide and Directional Coupler 18
2-4-1 Waveguide 18
2-4-2 Directional Coupler and Directional Coupling 21
2-5 Adiabatic Light Transfer 23
2-5-1 Fundamental of STIRAP 23
2-5-2 Rabi Oscillations 25
2-5-3 Adiabatic Coupling 28
2-5-4 Adiabatic Light Coupling in the Three Inclined Waveguide 32
2-5-5 Adiabatic Directional Coupler in LiNbO3 33
Chapter 3 Device Design and Fabrication Process 35
3-1 Device Design 35
3-2 Beam Propagation Method Simulation 37
3-3 Fabrication Process 37
3-3-1 Titanium In diffused Waveguide 38
3-3-2 Electrode fabrication process 40
Chapter 4 Experimental Results and Analysis 43
4.1 AAC Characteristic Measurement 44
4.2 Analysis of Coupling Characteristics Results as Passive Switch 46
4.3 Analysis of EOPMC Characteristics as Active Switch 49
4.4 Analysis of EOPMC + AAC (PC) Polarization Switch Characteristics 54
Chapter 5 Conclusions and Future Works 56
5.1 Conclusion 56
5.2 Future Works 57
REFERENCES 58
參考文獻 [1] C. R. Pollock and M. Lipson, Integrated photonics. Norwell, Mass.: Kluwer Academic, 2010.
[2] X. Zhang et al., “An Optical Switch Based on Electro-Optic Mode Deflection in Lithium Niobate Waveguide,” IEEE Photonics Technol. Lett., pp. 1–1, 2020, doi: 10.1109/LPT.2020.3019962.
[3] “IEEE Standard Definitions of Terms for Antennas,” IEEE Std 145-1993, pp. 1–32, Jul. 1993, doi: 10.1109/IEEESTD.1993.119664.
[4] T. A. Ramadan, R. Scarmozzino, and R. M. Osgood, “Adiabatic couplers: design rules and optimization,” J. Light. Technol., vol. 16, no. 2, pp. 277–283, Feb. 1998, doi: 10.1109/50.661021.
[5] A. Melikyan and P. Dong, “Adiabatic mode converters for silicon photonics: Power and polarization broadband manipulators,” APL Photonics, vol. 4, no. 3, p. 030803, Mar. 2019, doi: 10.1063/1.5080247.
[6] R. G. Hunsperger, Integrated optics: theory and technology, 6th ed. New York ; London: Springer, 2009.
[7] Y. Urino et al., “First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express, vol. 19, no. 26, p. B159, Dec. 2011, doi: 10.1364/OE.19.00B159.
[8] Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “The effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett., vol. 101, no. 19, Nov. 2008, doi: 10.1103/PhysRevLett.101.193901.
[9] G. Della Valle et al., “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett., vol. 92, no. 1, p. 011106, 2008, doi: 10.1063/1.2828985.
[10] H. P. Chung et al., “Adiabatic light transfer in titanium diffused lithium niobate waveguides,” Opt. Express, vol. 23, no. 24, p. 30641, Nov. 2015, doi: 10.1364/OE.23.030641.
[11] R. W. Boyd, Nonlinear Optics, Third Edition.pdf. Academic Press, 2003.
[12] S. Bahaa E.A, Fundamentals of Photonics. New York: John WIley & Sons, Inc, 1991.
[13] C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express, vol. 15, no. 5, p. 2548, 2007, doi: 10.1364/OE.15.002548.
[14] R. C. Alferness and L. L. Buhl, “Electro-optic waveguide TE ↔ TM mode converter with low drive voltage,” Opt. Lett., vol. 5, no. 11, p. 473, Nov. 1980, doi: 10.1364/OL.5.000473.
[15] G. Huang, T.-H. Park, and M.-C. Oh, “Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide,” Sci. Rep., vol. 7, no. 1, p. 4789, Dec. 2017, doi: 10.1038/s41598-017-05324-x.
[16] J. E. Toney, J. Retz, A. Pollick, V. E. Stenger, and S. Sriram, “Polarization mode converters in ZnO-diffused LiNbO3 waveguides,” Opt. Eng., vol. 58, no. 08, p. 1, Jun. 2019, doi: 10.1117/1.OE.58.8.082420.
[17] H.-P. Chung et al., “On-Chip Adiabatic Couplers for Broadband Quantum-Polarization State Preparation,” in Conference on Lasers and Electro-Optics, San Jose, California, 2018, p. JW2A.34. doi: 10.1364/CLEO_AT.2018.JW2A.34.
[18] H.-P. Chung et al., “Broadband on-chip polarization mode splitters in lithium niobate integrated adiabatic couplers,” Opt. Express, vol. 27, no. 2, p. 1632, Jan. 2019, doi: 10.1364/OE.27.001632.
[19] R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. Solids Surf., vol. 37, no. 4, pp. 191–203, Aug. 1985, doi: 10.1007/BF00614817.
[20] T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B, vol. 11, no. 9, p. 1681, Sep. 1994, doi: 10.1364/JOSAB.11.001681.
[21] Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of †Li‡Õ†Nb‡ and MgO concentrations,” p. 4.
[22] Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, and N. Ben Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Am. Inst. Phys., vol. 77, no. 3719, 2000.
[23] R. Kumar and J. Ghosh, “Parametric down-conversion in ppLN ridge waveguide: a quantum analysis for efficient twin photons generation at 1550 nm,” J. Opt., vol. 20, no. 7, p. 075202, Jul. 2018, doi: 10.1088/2040-8986/aac7da.
[24] T. Umeki et al., “Towards practical implementation of optical parametric amplifiers based on PPLN waveguides,” in Optical Fiber Communication Conference, San Diego, California, 2018, p. M3E.2. doi: 10.1364/OFC.2018.M3E.2.
[25] C. Wang et al., “Second-harmonic generation in nanophotonic PPLN waveguides with ultrahigh efficiencies,” in Conference on Lasers and Electro-Optics, San Jose, California, 2018, p. JTh5A.2. doi: 10.1364/CLEO_AT.2018.JTh5A.2.
[26] A. Yariv and Y. Pochi, Optical Waves in Crystal. Canada: John Wiley & Sons, Inc., 1984.
[27] X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett., vol. 28, no. 21, p. 2115, Nov. 2003, doi: 10.1364/OL.28.002115.
[28] J. W. Evans, “Solc Birefringent Filter,” J. Opt. Soc. Am., vol. 48, no. 3, p. 142, Mar. 1958, doi: 10.1364/JOSA.48.000142.
[29] M.-H. Chou, “OPTICAL FREQUENCY MIXERS USING THREE-WAVE MIXING FOR OPTICAL FIBER COMMUNICATIONS,” Stanford University, 1999.
[30] T. Tamir and H. Kogelnik, Integrated Optics, 2nd ed., vol. 7. Springer-Verlag New York Heidelberg Berlin, 1985.
[31] J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am., vol. 71, no. 7, p. 803, Jul. 1981, doi: 10.1364/JOSA.71.000803.
[32] N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “LASER-INDUCED POPULATION TRANSFER BY ADIABATIC PASSAGE TECHNIQUE,” Annu. Rev. Phys. Chem., vol. 52, no. 1, pp. 763–809, Oct. 2001, doi: 10.1146/annurev.physchem.52.1.763.
[33] B. W. Shore, “Picturing stimulated Raman adiabatic passage: a STIRAP tutorial,” Adv. Opt. Photonics, vol. 9, no. 3, p. 563, Sep. 2017, doi: 10.1364/AOP.9.000563.
[34] H. S. Hristova, A. A. Rangelov, G. Montemezzani, and N. V. Vitanov, “Adiabatic three-waveguide coupler,” Phys. Rev. A, vol. 93, no. 3, Mar. 2016, doi: 10.1103/PhysRevA.93.033802.
[35] E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun., vol. 258, no. 1, pp. 30–34, Feb. 2006, doi: 10.1016/j.optcom.2005.07.060.
[36] S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E, vol. 73, no. 2, Feb. 2006, doi: 10.1103/PhysRevE.73.026607.
[37] T. A. Ramadan, R. Scarmozzino, and R. M. Osgood, “Adiabatic couplers: design rules and optimization,” J. Light. Technol., vol. 16, no. 2, pp. 277–283, Feb. 1998, doi: 10.1109/50.661021.
[38] H.-P. Chung et al., “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep., vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-17094-7.
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2021-10-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明