博碩士論文 109226068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:193 、訪客IP:18.206.12.31
姓名 吳楊榮浩(Rong-Hao Wu-Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 使用方解石於數位全像顯微系統的深度測量系統
(Depth Measurement in Digital Holographic Microscope System Using Calcite)
相關論文
★ 精準色彩取像與顯示系統之設計與製作★ 符合多種道路路面需求之通用型路燈設計
★ 陣列式燈具光學特性快速量測之研究★ 使用透鏡陣列做為屏幕之數位光學相位共軛投影系統與適應性光學優化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 本論文提出使用方解石來使顯微系統所獲取的二維影像帶有深度資
訊,並透過同軸數位全像系統來解決顯微系統景深問題。我們利用方解石
晶體的雙折射現象,將經過方解石後所產生兩影像的距離視作物體高度,
藉由經過顯微系統所接收到的影像高度,來判斷物體所在之深度。針對顯
微系統景深過短的問題,我們使用同軸式數位全像來進行影像重新對焦,
解決景深過短之問題。實驗包括單一物體改變深度之測量以及同時測量兩
不同深度之物體兩種,並分析影響系統極限表現之因素。
摘要(英) In this thesis, we proposed the method that we use calcite to make the
two-dimensional image captured by a microscope system obtain depth
information. In addition, we use the in-line digital holography system to solve
the problem of depth of view in microscope system. We use the double
refraction phenomenon to take the distance between the two images passing
through the calcite as the object height. Then determine the depth of the object
by the captured image height, which passed through the microscope system. To
solve the problem of depth of view in microscope system, we use in-line digital
holography to refocus the image. In the experiment, the results included two
sections. First is measuring depth of one object by changing the depth location,
and the other is measuring depth of two objects at the same time. Finally, we
analyzed the factor affecting the extremum performance of the system.
關鍵字(中) ★ 深度測量
★ 數位全像
★ 雙折射
★ 數位全像顯微鏡
關鍵字(英)
論文目次 摘要 ...................................................................................................................... V
Abstract .............................................................................................................. VI
致謝 .................................................................................................................... VII
目錄 .................................................................................................................. VIII
圖目錄 .................................................................................................................. X
表目錄 .............................................................................................................. XIII
第一章 緒論 ....................................................................................................... 1
1-1 顯微鏡之發展........................................................................................ 1
1-2 全像術簡介 ............................................................................................ 2
1-3 基於數位全像之深度測量法簡介 ....................................................... 5
1-4 研究動機與目的 ................................................................................... 6
1-5 論文大綱 ................................................................................................ 7
第二章 原理介紹 ............................................................................................... 8
2-1 雙折射晶體原理 ................................................................................... 8
2-1-1 非均向物質特性 ......................................................................... 8
IX
2-1-2 雙折射現象解釋 ........................................................................ 13
2-2 放大率與物體深度之關係 ................................................................. 15
2-3 角頻譜傳遞法...................................................................................... 20
第三章 使用方解石於成像系統的深度測量技術 ......................................... 24
3-1 基本原理 .............................................................................................. 24
3-2 系統架構及運作流程 ......................................................................... 28
3-3 測量系統的極限分析 ......................................................................... 35
第四章 量測技術之驗證 ................................................................................. 38
4-1 單一物體之深度變化 ......................................................................... 38
4-2 同時記錄不同深度之物體 ................................................................. 42
第五章 結論 ..................................................................................................... 47
參考文獻 ............................................................................................................. 49
中英名詞對照表 ................................................................................................. 52
參考文獻 1. R. Bacon, Opus majus (1267).
2. Fondazione "Giorgio Ronchi.", Istituto nazionale di ottica, Atti Della Fondazione
Giorgio Ronchi E Contributi Dell′Istituto Nazionale Di Ottica, Volume 30, page
554(1975).
3. D. Bardell, “The First Record of Microscopic Observations,” BioScience 33, 36-38
(1983).
4. F. S. Spiers, The Microscope - Its Design, Construction and Applications (Read Books,
2008).
5. D. Bardell, “The Invention of the Microscope,” Bios 75, 78-84(2001).
6. R. Hooke, Micrographia (J. Martyn and J. Allestry, London, 1665).
7. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen
Wahrnehmung,” Archiv f. mikrosk. Anatomie 9, 413–468 (1873).
8. E. Abbe, “On the Estimation of Aperture in the Microscope,” Journal of the Royal
Microscopical Society 1, 388–423 (1881).
9. D. A. Agard, “Optical Sectioning Microscopy: Cellular Architecture in Three
Dimensions,” Annu. Rev. Biophys. Bio. 13, 191-219 (1984).
10. D. A. Agard, Y. Hiraoka, P. Shaw, J. W. Sedat, “Fluorescence Microscopy in Three
Dimensions,” Method Cell Biol. 30, 353-374 (1989).
11. J. G. McNally, T. Karpova, J. Cooper and J. A. Conchello, “Three-Dimensional Imaging
by Deconvolution Microscopy,” Methods 19, 373-385 (1999).
12. M. Minsky, “Memoir on Inventing the Confocal Scanning Microscope,” Scanning 10,
128-138 (1988).
13. G. Brakenhoff, H. T. van der Voort, E. A. van Spronson and N. Nanninga,
“3-dimensional imaging of biological structures by high resolution confocal scanning
laser microscopy,” Scanning Microscopy 2, 33-40 (1988).
14. M. Minsky, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science 248,
73-76 (1990).
15. A. Diaspro and M. Robello, “Two-photon excitation of fluorescence in
three-dimensional microscopy,” Eur. J. Histochem 43, 169–178 (1999).
16. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital
holography,” Opt. Lett. 23, 1221–1223 (1998).
17. F. Dubois, L. Joannes, and Jean-Claude Legros, “Improved three-dimensional imaging
with a digital holography microscope with a source of partial spatial coherence,” Appl.
Opt. 38, 7085–7094 (1999).
50
18. F. Palacios, J. Ricardo, D. Palacios, E. Gonçalves, J. L. Valin, R. De Souza, “3D image
reconstruction of transparent microscopic objects using digital holography,” Opt.
Commun. 248, 41-50 (2005).
19. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and
recognition of microorganism using single-exposure on-line (SEOL) digital
holography,” Opt. Express 13, 4492–4506 (2005).
20. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring
three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901
(2006).
21. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE
Reviews 1(1), 018005 (2010).
22. D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
23. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. R. Soc. 197, 454-487
(1949).
24. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,”
J. Opt. Soc. Am. 52, 1123-1130 (1962).
25. J.W. Goodman and R.W. Lawrence, “Digital image formation from electronically
detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
26. U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and
numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
27. W. Jueptner and U. Schnars, Digital Holography: Digital Hologram Recording,
Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin , 2005)
28. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory,
Algorithms, and Software (Wiley, Hoboken, NJ, USA, 1998).
29. J. Poittevin, P. Picart, C. Faure, F. Gautier, and C. Pézerat, “Multi-point vibrometer
based on high-speed digital in-line holography,” Appl. Opt. 54, 3185–3196 (2015).
30. J S. Montresor and P. Picart, “Quantitative appraisal for noise reduction in digital
holographic phase imaging,” Opt. Express 24, 14322–14343 (2016).
31. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital
wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85
(2000).
32. J. Gass, A. Dakoff, and M. Kim, “Phase imaging without 2 pi ambiguity by
multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
33. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C.
Depeursinge, "Real-time dual-wavelength digital holographic microscopy with a single
hologram acquisition," Opt. Express 15, 7231-7242 (2007).
51
34. D. Parshall and M. Kim, “Digital holographic microscopy with dual wavelength phase
unwrapping,” Appl. Opt. 45, 451–459 (2006).
35. T. Khoo, A. Sharikova, and A. Khmaladze, “Dual wavelength digital holographic
imaging of layered structures,” Opt. Commun. 458, 124793 (2020).
36. E. Wolf, "Three-dimensional structure determination of semi-transparent objects from
holographic data," Opt. Commun. 1, 153-156 (1969).
37. V. Lauer, "New approach to optical diffraction tomography yielding a vector equation
of diffraction tomography and a novel tomographic microscope," J. Microsc. 205,
165-176 (2002).
38. W. Gorski and W. Osten, "Tomographic imaging of photonic crystal fibers," Opt. Lett.
32, 1977-1979 (2007).
39. M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, "Holographic
microscopy and diffractive microtomography of transparent samples," Meas. Sci.
Technol. 19 (2008).
40. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, "
Optical diffraction tomography for high resolution live cell imaging," Opt. Express 17,
266-277 (2009).
41. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld,
"Tomographic phase microscopy," Nature Methods 4, 717-719 (2007).
42. W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Extended
depth of focus in tomographic phase microscopy using a propagation algorithm," Opt.
Lett. 33, 171-173 (2008).
43. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser
Radiation (Wiley, New York, 1984).
44. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart and Winston, New York,
1968).
45. M. Born and E. Wolf, Principles of Optics, 6th ed.( Pergamon Press, New York, 1991).
46. https://demonstrations.wolfram.com/SurfacesOfWaveNormalsInCrystals/
47. V. N. Mahajan, Optical Imaging and Aberrations, Part Ⅰ: Ray Geometrical Optics,
Section 1.6 (SPIE Press, Bellingham, WA, 1998).
48. J.W. Goodman, Introduction to Fourier Optics, 2 ed(McGraw Hill, Boston ,1996).
指導教授 孫慶成 余業緯(Ching-Cherng Sun Yeh-Wei Yu) 審核日期 2021-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明