博碩士論文 108523042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.222.179.186
姓名 盧盈君(Ying-Jiun Lu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於機器學習與經驗模態分解的心律異常數據分類之研究
(A Study of Machine Learning-Based Arrhythmia Data Classification with Empirical Mode Decomposition)
相關論文
★ 非結構同儕網路上以特徵相似度為基準之搜尋方法★ 以階層式叢集聲譽為基礎之行動同儕網路拓撲架構
★ 線上RSS新聞資料流中主題性事件監測機制之設計與實作★ 耐延遲網路下具密度感知的路由方法
★ 整合P2P與UPnP內容分享服務之家用多媒體閘道器:設計與實作★ 家庭網路下簡易無縫式串流影音播放服務之設計與實作
★ 耐延遲網路下訊息傳遞時間分析與高效能路由演算法設計★ BitTorrent P2P 檔案系統下載端網路資源之可調式配置方法與效能實測
★ 耐延遲網路中利用訊息編碼重組條件之資料傳播機制★ 耐延遲網路中基於人類移動模式之路由機制
★ 車載網路中以資料匯集技術改善傳輸效能之封包傳送機制★ 適用於交叉路口環境之車輛叢集方法
★ 車載網路下結合路側單元輔助之訊息廣播機制★ 耐延遲網路下以靜態中繼節點(暫存盒)最佳化訊息傳遞效能之研究
★ 耐延遲網路下以動態叢集感知建構之訊息傳遞機制★ 跨裝置影音匯流平台之設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 心電圖訊號的心跳分類對於診斷心律異常十分重要,為了有效針對多種心律異常的類 別進行分類,本論文提出一種使用機器學習長短期記憶網路(LSTM)的心律異常分類 方法,每個心電圖訊號透過經驗模態分解 (Empirical Mode Decomposition, EMD) 進行分解,並將感興趣的本質模態函數 (Intrinsic Mode Function, IMF) 結合成一個經過修潤的心電圖訊號。這段預處理後的心電圖訊號則可作為機器學習網路的輸入訊號。利用LSTM對時間序列與長期依賴性的能力,有效地將輸入的心電圖訊號進行分類。依據觀察,與原始訊號相比,EMD能濾除高頻訊號與校正基準線,使每個心跳的QRS波群的特徵變得更加清楚,以提升分類的準確度。相較於先前的方法,我們所提出的方法,在MIT-BIH心律異常資料庫中,達到98.79%的準確度。
摘要(英) To reduce the high mortality rate caused by heart diseases, classifying heartbeats of ECG signals is crucial for arrhythmia diagnosis. This study in this paper proposes a machine learning-based approach to classify a variety of arrhythmia using the long short- term memory (LSTM) technique. Each ECG signal is decomposed by empirical mode decomposition (EMD), and the intrinsic mode function (IMF) of interest is combined into a revised ECG signal. The pre-processed ECG signal is used as the input signal of the network model. In light of time series and long-term dependence among input signals, LSTM can effectively classify the input ECG signals. This study observes that EMD can filter out the high-frequency signals and correct the baseline by contrast to the original signals. Thus, the QRS characteristics of each beat can become clear, thereby improving the accuracy of classification. Compared with the previous methods, our proposed method achieves high accuracy of 98.79% in the MIT- BIH arrhythmia database.
關鍵字(中) ★ 心律異常分類
★ 心電圖訊號
★ 經驗模態分解
★ 長短期記憶網路
★ 機器學習
關鍵字(英) ★ arrhythmia classification
★ electrocardiogram (ECG)
★ empirical mode decomposition (EMD)
★ long short-term memory (LSTM)
★ machine learning
論文目次 摘要 i
Abstract ii
圖目錄 v
表目錄 vi
名詞定義表 vii
1 簡介 1
1.1 前言 1
1.2 研究動機 3
1.3 論文貢獻 5
2 研究背景及文獻探討 6
2.1 預處理 6
2.2 特徵提取 8
2.3 機器學習 9
3 研究方法 12
3.1 設計摘要 12
3.2 經驗模態分解 14
3.3 長短期記憶網路(LSTM) 20
3.4 激勵函數(Activation function) 22
3.5 損失函數(Loss function) 24
3.6 實驗流程圖 25
4 實作與結果分析 26
4.1 實驗環境 26
4.2 實驗設計 27
4.2.1 心電圖訊號收集 27
4.2.2 訊號預處理 29
4.2.3 分類 32
4.3 實驗結果 33
4.3.1 分類準確度 33
4.3.2 預處理的準確度差異 35
4.3.3 焦距參數比較 37
4.3.4 分析訓練時間 38
4.3.5 檢驗分類結果 39
4.3.6 與先前研究的比較 41
5 結論與未來研究 43
參考文獻 44
參考文獻 [1] “Cardiovascular diseases (cvds),” http://www.who.int/mediacentre/factsheets/ fs317/en/, 2017, accessed: 2021-08-22.
[2] “行政院衛福部統計處 108 年度死因統計,” https://dep.mohw.gov.tw/DOS/ lp-4927-113.html.
[3] C. Chen, Z. Hua, R. Zhang, G. Liu, and W. Wen, “Automated arrhythmia classification based on a combination network of cnn and lstm,” Biomedical Signal Processing and Control, vol. 57, p. 101819, 2020.
[4] G. Petmezas, K. Haris, L. Stefanopoulos, V. Kilintzis, A. Tzavelis, J. A. Rogers, A. K. Katsaggelos, and N. Maglaveras, “Automated atrial fibrillation detection using a hybrid cnn-lstm network on imbalanced ecg datasets,” Biomedical Signal Processing and Control, vol. 63, p. 102194, 2021.
[5] J. Gao, H. Zhang, P. Lu, and Z. Wang, “An effective lstm recurrent network to detect arrhythmia on imbalanced ecg dataset,” Journal of healthcare engineering, vol. 2019, 2019.
[6] N. I. Hasan and A. Bhattacharjee, “Deep learning approach to cardiovascular disease classification employing modified ecg signal from empirical mode decomposition,” Biomedical Signal Processing and Control, vol. 52, pp. 128–140, 2019.
[7] S. Aziz, M. U. Khan, Z. A. Choudhry, A. Aymin, and A. Usman, “Ecg-based biometric authentication using empirical mode decomposition and support vector machines,” in 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 2019, pp. 0906–0912.
[8] V. Mondéjar-Guerra, J. Novo, J. Rouco, M. G. Penedo, and M. Ortega, “Heartbeat classification fusing temporal and morphological information of ecgs via ensemble of classifiers,” Biomedical Signal Processing and Control, vol. 47, pp. 41–48, 2019.
[9] X. Chen, Y. Wang, L. Wang, et al., “Arrhythmia recognition and classification using ecg morphology and segment feature analysis,” IEEE/ACM transactions on computational biology and bioinformatics, vol. 16, no. 1, pp. 131–138, 2018.
[10] S. Saadatnejad, M. Oveisi, and M. Hashemi, “Lstm-based ecg classification for continuous monitoring on personal wearable devices,” IEEE journal of biomedical and health informatics, vol. 24, no. 2, pp. 515–523, 2019.
[11] A. Sharma, N. Garg, S. Patidar, R. San Tan, and U. R. Acharya, “Automated pre-screening of arrhythmia using hybrid combination of fourier–bessel expansion and lstm,” Computers in Biology and Medicine, vol. 120, p. 103753, 2020.
[12] Z. Ge, Z. Zhu, P. Feng, S. Zhang, J. Wang, and B. Zhou, “Ecg-signal classification using svm with multi-feature,” in 2019 8th International Symposium on Next Generation Electronics (ISNE). IEEE, 2019, pp. 1–3.
[13] E. Izci, M. A. Ozdemir, R. Sadighzadeh, and A. Akan, “Arrhythmia detection on ecg signals by using empirical mode decomposition,” in 2018 Medical Technologies National Congress (TIPTEKNO). IEEE, 2018, pp. 1–4.
[14] E. J. d. S. Luz, W. R. Schwartz, G. Cámara-Chávez, and D. Menotti, “Ecg-based heartbeat classification for arrhythmia detection: A survey,” Computer methods and programs in biomedicine, vol. 127, pp. 144–164, 2016.
[15] S. Parvaneh, J. Rubin, S. Babaeizadeh, and M. Xu-Wilson, “Cardiac arrhythmia detection using deep learning: A review,” Journal of electrocardiology, vol. 57, pp. S70–S74, 2019.
[16] Z. Ebrahimi, M. Loni, M. Daneshtalab, and A. Gharehbaghi, “A review on deep learning methods for ecg arrhythmia classification,” Expert Systems with Applications: X, vol. 7, p. 100033, 2020.
[17] X. Mei, N. Rao, Q. Li, C. Luo, B. F. Kipkurui, and H. Jiang, “Detecting atrial fibrillation from single-lead ecg using unbalanced multi-classification support vector machine,” in Proceedings of the 2019 4th International Conference on Machine Learning Technologies, 2019, pp. 66–69.
[18] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
[19] “Mit-bih arrhythmia database,” https://www.physionet.org/content/mitdb/1.0.0/, accessed: 2021-08-22.
[20] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903–995, 1998.
[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[22] D. Jyotishi and S. Dandapat, “An lstm-based model for person identification using ecg signal,” IEEE Sensors Letters, vol. 4, no. 8, pp. 1–4, 2020.
指導教授 胡誌麟 審核日期 2021-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明