博碩士論文 108624011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.219.32.19
姓名 林采蓁(Tsai-Chen Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 應用因子分析與人工神經網路建立硝酸鹽氮污染潛勢的預測模型
相關論文
★ 以人工智慧為基礎進行地下水情勢的空間地圖繪製與公共衛生管理實務應用:蘭陽平原飲用含砷地下水的健康風險空間變異分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來臺灣用水需求大增,水資源的品質與供應量成為重要議題。臺灣雖降雨充沛但地表水資源保留不易,地下水成為重要水資源來源。不適當之土地使用產生的有害化學物質滲透到非飽和土壤中,最終會到達下面的含水層系統,因此,淺層含水層的地下水水質受到土地利用和非飽和土壤的顯著影響。本研究的目的為應用因子分析及人工神經網路的方法建立土地利用與硝酸鹽氮污染潛勢區的預測模型,首先應用因子分析的方法,分析結果指出因子三中硝酸鹽氮、果樹與礫石層呈現正相關,根據此結果將因子三之得分作為人工神經網路的輸入參數,以硝酸鹽氮濃度作為輸出結果,而後根據前人研究加入其他水質參數,包含鈣、鎂、鈉、鉀、砷、氯鹽、硫酸鹽、鐵、錳、總有機碳、碳酸氫根做為人工神經網路的輸入參數。人工神經網路的結果顯示在2層隱藏層且每層神經元個數為12個的模式下有最好的預測效果,R^2達到0.664,證實土地利用、地質材料、水質與硝酸鹽氮的污染相關性。得出此架構為最佳的預測硝酸鹽氮濃度模型後,本研究將所有的123筆資料以此模型架構進行最後的預測,得出R^2為0.95,達到很好的預測效能,為預測地下水硝酸鹽氮的污染潛勢提供了一個很好的預測模式。政府可依據結果採取土地利用管理措施更好地預防或控制地下水污染,規劃完善的水質保護計畫以維護臺灣居民使用地下水的安全。
摘要(英) In recent years, the demand for water greatly increases with Taiwan’s population growing cause the water quality and supply become an important issue. Although Taiwan has abundant rainfall, which is not easy to retain surface water, and cause the groundwater become an important water resource. The harmful chemicals coming from inappropriate land use permeate through unsaturated soil and ultimately reach the underlying aquifer system. Groundwater quality in shallow aquifer is thus significantly affected by the land use and unsaturated soil. This study’s target is to develop a predictive model for occurrence of nitrate pollution in Taiwan coupled with artificial neural network. First, the method of factor analysis is applied. According to the results of factor analysis, it is indicated that the nitrate, fruit trees, and gravel layer are positively correlated. Based on the result, the scores for factor 3 used as the input data of the artificial neural network, and the nitrate concentration is the output result. Then, based on previous studies, other parameters were added, including Cl^-, SO_4^(2-), TOC, Fe^(3+), Mn^(2+), Ca^(2+), Mg^(2+), Na^(2+), K^+, HCO_3^- and As. The result of artificial neural network show that the model with 2 hidden layers and 12 neurons in each hidden layers has the best predictive effect. The determination coefficient is 0.664. This framework as the best model for predicting the concentration of nitrate. The study uses the final model to predict, R^2 can reach 0.95, which achieves good prediction performance, and provides a good prediction model for predicting the groundwater nitrate vulnerability. The government can strength land use management or take a better plan to prevent or control groundwater pollution and plan a comprehensive water quality protection plan to maintain the safety of Taiwan residents using groundwater.
關鍵字(中) ★ 硝酸鹽氮
★ 因子分析
★ 人工神經網路
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
1-1動機 1
1-1-1臺灣的水資源 1
1-1-2臺灣地下水硝酸鹽氮污染情況 4
1-1-3硝酸鹽氮暴露對健康的影響 7
1-1-4預測硝酸鹽氮污染的方法 10
1-2文獻回顧 13
1-3研究目的 23
1-4研究流程 24
第二章 研究資料與方法 25
2-1材料蒐集 25
2-1-1土地利用 25
2-1-2 地質材料 26
2-1-3地下水水質 28
2-2因子分析 29
2-3人工神經網路 34
2-3-1人工神經網路簡介 34
2-3-2生物神經網路與人工神經網路 35
2-3-3人工神經網路運作 37
2-3-4人工神經網路特性 41
2-3-5人工神經網路優點 42
2-3-6倒傳遞神經網路 43
2-4 交叉驗證與評估標準 47
第三章 結果與討論 51
3-1水質特性 51
3-2適合度分析及相關性分析 53
3-3因子分析結果 56
3-4因子特性說明 59
3-4-1因子一:「海水鹽化因子」 59
3-4-2因子二:「砷污染因子」 61
3-4-3因子三:「硝酸鹽氮污染因子」 63
3-4-4因子四:「鐵、錳還原因子」 65
3-5人工神經網路模式 67
3-5-1根據因子得分作為輸入參數之模型 67
3-5-2增加水質作為輸入參數之模型 69
3-5-3深度學習之網路模型 71
3-5-4最優架構的人工神經網路訓練結果 73
第四章 結論與建議 77
4-1結論 77
4-2建議 79
參考文獻 80
附錄 89
參考文獻 [1] 交通部中央氣象局預報中心,「氣候監測報告」,第一百一十八期,13-16頁,交通部中央氣象局,2018。
[2] 經濟部水利署統計資料指標 : https://data.gov.tw/dataset/16936
[3] 經濟部水利署,「臺灣地區民國107年各標的用水量統計報告」,14-15頁,經濟部水利署。
[4] 經濟部水利署,「濁水溪沖積扇扇頂區硝酸鹽氮豐枯水期分佈情形與成因」,經濟部水利署電子報,第0199期, 2016。
[5] 陳文福,臺灣的地下水,遠足文化出版,2005。
[6] 劉振宇,「集水區上游南投地區地下水硝酸鹽氮污染潛勢評估」,農業試驗所特刊,第134號,2008。
[7] Ward, M. H., Jones, R.R., Brender, J.D., Kok, T.M., Weyer, P.J., Nolan, B. T., Villanueva, C. M., & Breda, S. G., “Drinking Water Nitrate and Human Health: An Updated Review”. Environmental Research and Public Health, 15(7), 1557, 2018.
[8] Jones, R.R., Weyer, P. J., DellaValle, C. T., Inoue-Choi, M., Anderson, K. E., Cantor, K. P., Krasner, S., Robien, K., Freeman, L. E. B., Silverman, D. T., & Ward, M.H., “Nitrate from Drinking Water and Diet and Bladder Cancer Among Postmenopausal Women in Iowa”. Environmental Health Perspectives, 124(11), 1751-1758, 2016.
[9] Yang, C. Y., Cheng, M. F., Tsai, S. S., & Hsieh, Y. L., “Calcium, Magnesium, and Nitrate in Drinking Water and Gastric Cancer Mortality”. Japanese Journal of Cancer Research, 89(2), 124-130, 1998.
[10] Weiss, B., “Evidence for Mutagenesis by Nitric Oxide during Nitrate Metabolism in Escherichia coli”. Journal of Bacteriology, 188(3), 829-833, 2006.
[11] Aller, L., T. Bennett, J. Lehr, & R. Petty., “DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings”. U.S. Environmental Protection Agency, Washington, D.C., 1987.
[12] McDonald, M. G. & Harbaugh, A. W., “A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model”. U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A1, 1988.
[13] Zheng, C. & Wang, P. P. “MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide”, 1999.
[14] Yeh, G. T., Ward, D. S., “FEMWATER: A finite-element model of water flow through saturated-unsaturated porous media”. ORNL-5567, Oak Ridge National Laboratory, 1980.
[15] Yeh, G. T., ”AT123D: Analytical transient one-, two-, and three-dimensional simulation of waste transport in the aquifer system”. ORNL-5602, Oak Ridge National Laboratory, 1981.
[16] Love, D., Hallbauer, D., Amos, A., Hranova, R., “Factor analysis as a tool in groundwater quality management: two southern African case studies”. Physics and Chemistry of the Earth, 29(15-18), 1135-1143, 2004.
[17] de Andrade, E. M., Pala´cio, H. A. Q., Souza, I. H., de Oliveira Lea˜o, R. A., & Guerreiro, M. J., “Land use effects in groundwater composition of an alluvial aquifer (Trussu River, Brazil) by multivariate techniques”. Environmental Research, 106(2), 170-177, 2008.
[18] Jiang Y., Wu, Y., Greoves, C., Yuan, D., & Kambesis, P., “Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China”. Journal of Contaminant Hydrology, 109(1-4), 49-61, 2009.
[19] Liang, C. P., Wang, C. H., Wang, S. W., Chang, T. W. & Chen, J. S., “Application of Factor Analysis for Characterizing the Relationships between Groundwater Quality and Land Use in Taiwan’s Pingtung Plain”. Sustainability, 12(24), 10608, 2020.
[20] Penha, A. M., Chambel, A., Murteira, M., & Morais, M., “Influence of different land uses on groundwater quality in southern Portugal”. Environmental Earth Sciences, 75(7), 622, 2016.
[21] Salman, S. A., Shahid, S., Mohsenipour, M., & Asgari, H., “Impact of landuse on groundwater quality of Bangladesh”. Sustainable Water Resources Management, 4, 1031-1036, 2018.
[22] Chen, S., Wu, W., Hu, K., & Li, W., “The effects of land use change and irrigation water resource on nitrate contamination in shallow groundwater at county scale”. Ecological Complexity, 7(2), 131-138, 2010.
[23] Laurent, F., & Ruelland, D., “Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale”. Journal of Hydrology, 409(1-2), 440-450, 2011.
[24] Bawa, R. & Dwivedi, P., “Impact of land cover on groundwater quality in the Upper Floridan Aquifer in Florida, United States”. Environmental Pollution, 252, 1828-1840, 2019.
[25] Piccini, C., Marchetti A., Farina R., & Francaviglia R., “Application of Indicator kriging to Evaluate the Probability of Exceeding Nitrate Contamination Thresholds”. International Journal of Environmental Research, 6(4), 853-862, 2012.
[26] Chica-Olmo, M., Luque-Espinar, J. A., Rodriguez-Galiano, V., Pardo-Igúzquiza, E., & Chica-Rivas, L., “Categorical Indicator Kriging for assessing the risk of groundwater nitrate pollution: The case of Vega de Granada aquifer (SE Spain)”. Science of the Total Environment, 470-471, 229-239, 2014.
[27] Fallahzadeh, R. A., Almodaresi, S. A., Dashti, M. M., Fattahi, A., Sadeghnia, M., Eslami, H., Khosravi, R., Minaee, P., & Taghavi, M., “Zoning of Nitrite and Nitrate Concentration in Groundwater Using Geografic Information System (GIS), Case Study: Drinking Water Wells in Yazd City”. Journal of Geoscience and Environment Protection, 4(3), 2016.
[28] Arslan, H., Turan, N. A., Demir, Y., Güngör, A., & Cemek, B., “Assessment of spatial and seasonal changes in groundwater nitrate pollution of agricultural lands through ordinary and indicator kriging techniques”. Archives of Agronomy and Soil Science, 2016.
[29] Darwishe, H., Khattabi, J. E., Chaaban, F., Louche, B., Masson, E., & Carlier, E., “Prediction and control of nitrate concentrations in groundwater by implementing a model based on GIS and artificial neural networks (ANN)”. Environmental Earth Sciences, 76(19), 649, 2017
[30] Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H., “Artificial Neural Network for Modeling Nitrate Pollution of Groundwater in Marginal Area of Zayandeh-rood River, Isfahan, Iran”. KSCE Journal of Civil Engineering, 21(1), 134-140, 2017.
[31] Foddis, M. L., Montisci, A., Trabelsi, F., & Uras, G., “An MLP-ANN-based approach for assessing nitrate contamination”. Water Supply, 19(7), 1911-1917, 2019.
[32] Rodriguez-Galiano, V., Mendes, M. P., Garcia-Soldado, M. J., Chica-Olmo, M., & Ribeiro, L., “Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)”. Science of the Total Environment, 476-477, 189-206, 2014.
[33] Rahmati, O. Choubin, B., Fathabadi, A., Coulon, F., Soltani, E., Shahabi, H., Mollaefar, E., Tiefenbacher, J., Cipullo, S., Ahmad, B. B., & Bui, D. T. “Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods”. Science of the Total Environment, 688, 855-866, 2019.
[34] Knoll, L., Breuer, L., & Bach. M., “Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning”. Environmental Research Letters, 15, 064004, 2020.
[35] Yesilnacar, M. I., Sahinkaya, E., Naz, M., & Ozkaya, B., “Neural network prediction of nitrate in groundwater of Harran Plain, Turkey”. Environ Geol, 56, 19-25, 2008
[36] Wheeler, D. C., Choubin, B., Fathabadi, A., Coulon, F., Soltani, E., Shahabi, H., Mollaefar, E., Tiefenbacher, J., Cipullo, S., Ahmad, B. B., & Bui, D. T., “Modeling groundwater nitrate concentrations in private wells in Iowa”. Science of the Total Environment, 536, 481-488, 2015.
[37] Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H., “Artificial Neural Network for Modeling Nitrate Pollution of Groundwater in Marginal Area of Zayandeh-rood River, Isfahan, Iran”. Environmental Engineering, 21(1), 134-140, 2017.
[38] Ransom, K. M., Nolan, B. T., Traum, J. A., Faunt, C. C., Bell, A. M., Gronberg , J. A. M., Wheeler, D. C., Rosecrans, C. Z., Jurgens, B., Schwarz, G. E., Belitz, K., Eberts, S. M., Kourakos, G., & Harter, T., “A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA”. Science of the Total Environment, 601-602, 1160-1172, 2017.
[39] Darwishe, H., Khattabi, J. E., Chaaban, F., Louche, B., Masson, E., & Carlier, E., “Prediction and control of nitrate concentrations in groundwater by implementing a model based on GIS and artificial neural networks (ANN)”. Environmental Earth Sciences, 76, 649, 2017.
[40] Wagh, V., Panaskar, D., Muley, A., Mukate, S., & Gaikwad, S., “Neural Network Modelling for Nitrate Concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India”. Groundwater for Sustainable Development, 2018
[41] Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S., Coulon, F., & Pradhan, B., “A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination”. Science of the Total Environment, 644, 954-962, 2018.
[42] Knoll, L., Breuer, L., & Bach. M., “Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning”. Science of the Total Environment, 688, 1317-1327, 2019.
[43] Heißerer, T., Haslauer, C. P., & Bárdossy, A., “Including land use information for the spatial estimation of groundwater quality parameters – 1. Local estimation based on neighbourhood composition”. Journal of Hydrology, 535, 688-698, 2016.
[44] 經濟部中央地質調查所: https://hydrogis.moeacgs.gov.tw/map/zh-tw
[45] Wang X., “The Relationship of Land Use and Groundwater Quality: A Case Study of Rhode Island”. University of Rhode Island, Thesis, 1989.
[46] McCulloch W. S., & Pitts W., “A logical calculus of the ideas immanent in nervous activity”. The bulletin of mathematical biophysics volume, 5, 115-133, 1943.
[47] 張斐章、張麗秋,類神經網路導論原理與應用,二版,滄海圖書資訊股份有限公司,臺中市,民國104年。
[48] 行政院環保署: https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015512
[49] Hair, J. F., Black, B., Babin, B., Anderson, R. E., & Tatham, R. L., Multivariate Data Analysis (6th ed.), Macmillan, New York, 1992.
[50] Wang, C., Chiang, C.J., Peng, T. & Liu, W., “Deterioration of groundwater quality in the coastal Pingtung Plain, southern Taiwan”. IAHS publication, 39-46, 1999.
[51] Liu, C. W., Lin, K. H. & Kuo, Y. M., “Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan”. Science of the Total Environment, 313, 77-89, 2003.
[52] Roy, L.A., Davis, D.A., Saoud, I.P. & Henry, R.P., ” Supplementation of potassium, magnesium and sodium chloride in practical diets for the Pacific white shrimp, Litopenaeus vannamei , reared in low salinity waters”. Aquaculture Nutrition, 104–113, 2007.
[53] 蘇秋生,「多變量統計與時間序列分析於地下水水質管理上之應用-以嘉南平原地下水分區為例」,崑山科技大學,碩士論文,民國 98 年。
[54] 許正一,「土壤重金屬知多少」,科學發展月刊,468期,54-59頁,2011年12月。
[55] Wang, S. W., Liu, C. W., & Jang, C. S., ”Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan.” Applied Geochemistry, 22(2), 460-476, 2007
[56] 簡錦樹,李廣洋,劉家全,卡商迪,「台灣嘉南平原、孟加拉-印度Ganges三角洲平原沖積含水層地下水砷的釋放及吸附脫附機制之研究研究成果報告」,行政院國家科學委員會補助專題研究計畫,2011年10月。
[57] 李金靖,「蘭陽平原地下水砷之地化特徵及健康風險評估」,國立臺灣大學,博士論文,民國97年。
[58] 薛光展,「嘉南地區地下水含砷濃度對稻米含砷量之風險評估」,國立成功大學,碩士論文,民國 96年。
[59] Ramos, C., Agut, A., Lido´n, A. L., “Nitrate leaching in important crops of the Valencian Community region (Spain)”. Environmental Pollution, 118, 215-223, 2002.
[60] Jang C. S., Lin, C. W., Liang, C. P., & Chen, J. S., “Developing a reliable model for aquifer vulnerability”. Stochastic Environmental Research and Risk Assessment, 30(1), 175-187, 2015.
[61] Lu, K. L., Liu, C. W. & Jang, C. S., “Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan”, Environ Monit Assess, 184(10), 6071-6085, 2012.
[62] Nath, B., Jean, J. S., Lee, M. K., Yang, H. J. & Liu, C. C., “Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic”, Journal of Contaminant Hydrology, 99(1-4), 85-96, 2008
[63] 陳文福,呂學諭,劉聰桂,「臺灣地下水之氧化還原狀態與砷濃度」,農業工程學報,第56卷第2期,57~70頁,99年6月。
指導教授 陳瑞昇 梁菁萍(Jui-Sheng Chen Ching-Ping Liang) 審核日期 2021-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明