博碩士論文 109423047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.128.204.140
姓名 林迦秀(CHIA-HSIU LIN)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 PSO、WOA和RLSE訓練方法於時間序列智慧型預測之比較研究
(A Comparison Study of the Training Methods of PSO, WOA and RLSE for the Intelligent Prediction of Time Series)
相關論文
★ 變數選擇在智慧型系統與應用之研究★ 智慧型系統之參數估測研究─一個新的DE方法
★ 合奏學習式智慧型系統在分類問題之研究★ 複數模糊類神經系統於多類別分類問題之研究
★ 融入後設認知策略的複數模糊認知圖於分類問題之研究★ 分類問題之研究-以複數型模糊類神經系統為方法
★ 智慧型差分自回歸移動平均模型於時間序列預測之研究★ 計算智慧及複數模糊集於適應性影像處理之研究
★ 智慧型模糊類神經計算模式使用複數模糊集合與ARIMA模型★ Empirical Study on IEEE 802.11 Wireless Signal – A Case Study at the NCU Campus
★ 自我建構式複數模糊ARIMA於指數波動預測之研究★ 資料前處理之研究:以基因演算法為例
★ 針對文字分類的支援向量導向樣本選取★ 智慧型區間預測之研究─以複數模糊類神經、支持向量迴歸、拔靴統計為方法
★ 複數模糊類神經網路在多目標財經預測★ 智慧型模糊類神經計算使用非對稱模糊類神經網路系統與球型複數模糊集
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 本研究針對時間序列問題,建構一個向量化複數模糊神經系統(A vectorized
complex neuro-fuzzy system, VCNFS)。模型引入自我建構(Self-organization)的概念,
以減法分群法(Subtractive clustering algorithm, SC)利用輸入資料提供的資訊決定初始
參數。模糊系統的前鑑部使用複數模糊集合(Complex fuzzy sets, CFSs)產生複數隸屬
度及複數啟動強度,再將每一個啟動強度擴展為一向量,使模型可進行多目標的預測;
本研究分別使用粒子群演算法(Particle swarm optimization, PSO)、鯨群最佳化演算法
(Whale optimization algorithm, WOA)以及結合 PSO 與 WOA 提出 PSO-WOA,和遞迴最
小平方估計法(Recursive Least Squares Estimator, RLSE)形成混合式的演算法,用於模
型參數學習;引入分治法(Divide-and-conquer)的概念,降低單一演算法需調整的參
數量,減低個別演算法負擔以提升效能將。參數分為兩個集合,分別為模糊系統的前
鑑部參數以及後鑑部參數,前鑑部參數使用 PSO 與 WOA 兩種演算法,相互合作調整;
後鑑部參數由 RLSE 調整,使模型可以快速收斂;在測試階段,利用 RLSE 只需最新資料
對就能更新參數的特性,不需要花費太多計算效能,即可將新資料對納入模型中,優
化系統預測效能,降低產生過度擬合的機率。為了驗證提出模型之預測效能,採用金
融時間序列做為資料集設計三個實驗進行預測。實驗結果表明本研究提出之模型與其
它研究文獻相比擁有良好的預測效能。
摘要(英) For financial time series problems, this study proposes a vectorized complex neuro-fuzzy
system (VCNFS). The proposed model is based on a neuro-fuzzy framework, where there are
several If-Then rules constructed with complex fuzzy sets (CFSs) in terms of a neural network.
The premise parts of If-Then rules are determined initially by the Subtractive Clustering (SC)
algorithm with the information given by data, while the consequent parts are polynomial
functions. Thus, the model is basically realized by the self-organization and data-driven
concept. The use of complex fuzzy sets (CFSs) enables the proposed model to perform multitarget prediction. For model parameter learning, a novel hybrid learning algorithm is proposed,
called the PSO-WOA-RLSE, which combines the Particle Swarm Optimization (PSO) with the
Whale Optimization Algorithm (WOA) and the Recursive Least Squares Estimator (RLSE). The
PSO-WOA-RLSE algorithm uses the divide-and-conquer principle, where the PSO and WOA
cooperate with each other to adjust the parameters of the premise parts of If-Then rules, and
the RLSE to adjust the parameters of the consequent parts, so that the proposed model can
converge quickly with good accuracy. Parameter optimization by the PSO-WOA-RLSE
algorithm separate the parameters that need to be optimized in a single algorithm, so to
reduce the burden of the algorithm, and improves the performance of the model, in terms of
quick convergence and optimization accuracy. In the testing phase, using RLSE to update
parameters with known data after prediction can reduce the probability of overfitting and
optimize the prediction performance of the system. Three experiments are designed in this
study, all of which use financial time-series datasets to verify the performance of the proposed
multi-target forecasting model. The experimental results show that the model proposed in
this study has good prediction performance compared with other research literatures.
關鍵字(中) ★ 多目標預測
★ 類神經模糊系統
★ 金融時間序列
關鍵字(英) ★ Mutli-target forecasting
★ neuro fuzzy system
★ finance time series
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 x
一、 緒論 1
1-1 研究背景與目的 1
1-2 研究方法 2
1-3 論文架構 3
二、 文獻探討 4
2-1 粒子群最佳化演算法 4
2-2 鯨群最佳化演算法 4
2-3 複數模糊集合 6
三、 系統設計與架構 8
3-1 向量化複數模糊神經系統 8
3-2 模型結構學習 12
3-3 參數學習 14
3-4 混合式演算法 18
四、 實驗 20
4-1 實驗一:單目標時間序列預測 20
4-2 實驗二:雙目標時間序列預測 35
4-3 實驗三:四目標時間序列預測 41
五、 討論 48
六、 結論 51
6-1 結論與貢獻 51
6-2 未來研究方向 52
參考文獻 53
附錄 57
實驗一 57
實驗二 69
實驗三 74
參考文獻 A. Gunasekarage and D. Power, “The profitability of moving average trading rules in South Asian stock markets,” Emerging Markets Review, vol. 2, pp. 17–33, Mar. 2001, doi: 10.1016/S1566-0141(00)00017-0.
[2] C. N. Babu and B. E. Reddy, “Selected Indian stock predictions using a hybrid ARIMA-GARCH model,” in 2014 International Conference on Advances in Electronics Computers and Communications, Oct. 2014, pp. 1–6. doi: 10.1109/ICAECC.2014.7002382.
[3] T. Li, S. Qu, and G. Huang, “Research on the Prediction of Shenzhen Growth Enterprise Market Price Index Based on EMD-ARIMA Model,” in LISS 2020, Singapore, 2021, pp. 783–795. doi: 10.1007/978-981-33-4359-7_54.
[4] A. Dingli and K. Fournier, “Financial Time Series Forecasting – A Deep Learning Approach,” International Journal of Machine Learning and Computing, vol. 7, pp. 118–122, Oct. 2017, doi: 10.18178/ijmlc.2017.7.5.632.
[5] W. Li, W. Huang, and A. Zou, “A Hybrid Deep Neural Network Model for Stock Prediction,” in 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Dec. 2021, vol. 2, pp. 483–489. doi: 10.1109/ICIBA52610.2021.9688099.
[6] X. Zhang, X. Liang, A. Zhiyuli, S. Zhang, R. Xu, and B. Wu, “AT-LSTM: An Attention-based LSTM Model for Financial Time Series Prediction,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 569, no. 5, p. 052037, Jul. 2019, doi: 10.1088/1757-899X/569/5/052037.
[7] D.-A. Ha, C.-H. Liao, K.-S. Tan, and S.-M. Yuan, “Deep Learning Models for Predicting Monthly TAIEX to Support Making Decisions in Index Futures Trading,” Mathematics, vol. 9, p. 3268, Dec. 2021, doi: 10.3390/math9243268.
[8] Choi H. K., “Stock Price Correlation Coefficient Prediction with ARIMA-LSTM Hybrid Model,” Aug. 2018, doi: 10.48550/arXiv.1808.01560.
[9] H. Shah, V. Bhatt, and J. Shah, “A Neoteric Technique Using ARIMA-LSTM for Time Series Analysis on Stock Market Forecasting,” in Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy, Singapore, 2022, pp. 381–392. doi: 10.1007/978-981-16-5952-2_33.
[10] Y. Li and Y. Pan, “A novel ensemble deep learning model for stock prediction based on stock prices and news,” Int J Data Sci Anal, vol. 13, no. 2, pp. 139–149, Mar. 2022, doi: 10.1007/s41060-021-00279-9.
[11] E. Mizutani and J.-S. R. Jang, “Coactive neural fuzzy modeling,” in Proceedings of ICNN’95 - International Conference on Neural Networks, Nov. 1995, vol. 2, pp. 760–765 vol.2. doi: 10.1109/ICNN.1995.487513.
[12] J. S. G.K and J. J, “MANFIS based SMART home energy management system to support SMART grid,” Peer-to-Peer Netw. Appl., vol. 13, no. 6, pp. 2177–2188, Nov. 2020, doi: 10.1007/s12083-020-00884-8.
[13] S. L. Chiu, “Fuzzy Model Identification Based on Cluster Estimation,” Journal of Intelligent & Fuzzy Systems, vol. 2, no. 3, pp. 267–278, Jan. 1994, doi: 10.3233/IFS-1994-2306.
[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, Nov. 1995, vol. 4, pp. 1942–1948 vol.4. doi: 10.1109/ICNN.1995.488968.
[15] S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, May 2016, doi: 10.1016/j.advengsoft.2016.01.008.
[16] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, Jun. 1965, doi: 10.1016/S0019-9958(65)90241-X.
[17] J. J. Buckley, “Fuzzy complex numbers,” Fuzzy Sets and Systems, vol. 33, no. 3, pp. 333–345, Dec. 1989, doi: 10.1016/0165-0114(89)90122-X.
[18] D. Ramot, R. Milo, M. Friedman, and A. Kandel, “Complex fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 171–186, Apr. 2002, doi: 10.1109/91.995119.
[19] C. Li and T.-W. Chiang, “Complex Neurofuzzy ARIMA Forecasting—A New Approach Using Complex Fuzzy Sets,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 3, pp. 567–584, Jun. 2013, doi: 10.1109/TFUZZ.2012.2226890.
[20] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665–685, May 1993, doi: 10.1109/21.256541.
[21] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, vol. 5.1, pp. 281–298, Jan. 1967.
[22] J. C. Dunn, “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters,” p. 27.
[23] K. Huarng and H.-K. Yu, “A Type 2 fuzzy time series model for stock index forecasting,” Physica A: Statistical Mechanics and its Applications, vol. 353, pp. 445–462, Aug. 2005, doi: 10.1016/j.physa.2004.11.070.
[24] W. Zhang, S. Zhang, S. Zhang, D. Yu, and N. Huang, “A multi-factor and high-order stock forecast model based on Type-2 FTS using cuckoo search and self-adaptive harmony search,” Neurocomputing, vol. 240, pp. 13–24, May 2017, doi: 10.1016/j.neucom.2017.02.054.
[25] C.-H. Cheng, G.-W. Cheng, and J.-W. Wang, “Multi-attribute fuzzy time series method based on fuzzy clustering,” Expert Systems with Applications, vol. 34, no. 2, pp. 1235–1242, Feb. 2008, doi: 10.1016/j.eswa.2006.12.013.
[26] S.-M. Chen, “Forecasting Enrollments Based on High-Order Fuzzy Time Series,” Cybernetics and Systems, vol. 33, no. 1, pp. 1–16, Jan. 2002, doi: 10.1080/019697202753306479.
[27] L.-W. Lee, L.-H. Wang, S.-M. Chen, and Y. Leu, “Handling forecasting problems based on two-factors high-order fuzzy time series,” Fuzzy Systems, IEEE Transactions on, vol. 14, pp. 468–477, Jul. 2006, doi: 10.1109/TFUZZ.2006.876367.
[28] O. Cagcag Yolcu, U. Yolcu, E. Egrioglu, and C. H. Aladag, “High order fuzzy time series forecasting method based on an intersection operation,” Applied Mathematical Modelling, vol. 40, no. 19, pp. 8750–8765, Oct. 2016, doi: 10.1016/j.apm.2016.05.012.
[29] E. Bas, U. Yolcu, E. Egrioglu, and C. H. Aladag, “A Fuzzy Time Series Forecasting Method Based on Operation of Union and Feed Forward Artificial Neural Network,” American Journal of Intelligent Systems, vol. 5, no. 3, pp. 81–91, 2015.
[30] E. Egrioglu, C. H. Aladag, U. Yolcu, V. R. Uslu, and N. A. Erilli, “Fuzzy time series forecasting method based on Gustafson–Kessel fuzzy clustering,” Expert Systems with Applications, vol. 38, no. 8, pp. 10355–10357, Aug. 2011, doi: 10.1016/j.eswa.2011.02.052.
[31] L. Wang, X. Liu, and W. Pedrycz, “Effective intervals determined by information granules to improve forecasting in fuzzy time series,” Expert Systems with Applications, vol. 40, no. 14, pp. 5673–5679, Oct. 2013, doi: 10.1016/j.eswa.2013.04.026.
[32] H. Guan, H. Jie, S. Guan, and A. Zhao, “A novel fuzzy-Markov forecasting model for stock fluctuation time series,” Evol. Intel., vol. 13, no. 2, pp. 133–145, Jun. 2020, doi: 10.1007/s12065-019-00328-0.
[33] H. Guo, W. Pedrycz, and X. Liu, “Fuzzy time series forecasting based on axiomatic fuzzy set theory,” Neural Comput & Applic, vol. 31, no. 8, pp. 3921–3932, Aug. 2019, doi: 10.1007/s00521-017-3325-9.
[34] R. M. Pattanayak, S. Panigrahi, and H. S. Behera, “High-Order Fuzzy Time Series Forecasting by Using Membership Values Along with Data and Support Vector Machine,” Arab J Sci Eng, vol. 45, no. 12, pp. 10311–10325, Dec. 2020, doi: 10.1007/s13369-020-04721-1.
[35] K. Bisht and A. Kumar, “A method for fuzzy time series forecasting based on interval index number and membership value using fuzzy c-means clustering,” Evol. Intel., Aug. 2021, doi: 10.1007/s12065-021-00656-0.
[36] H.-K. Yu, “A refined fuzzy time-series model for forecasting,” Physica A: Statistical Mechanics and its Applications, vol. 346, no. 3, pp. 657–681, Feb. 2005, doi: 10.1016/j.physa.2004.07.024.
[37] Y. Wan and Y.-W. Si, “Adaptive neuro fuzzy inference system for chart pattern matching in financial time series,” Applied Soft Computing, vol. 57, pp. 1–18, Aug. 2017, doi: 10.1016/j.asoc.2017.03.023.
[38] Y. Ren, P. N. Suganthan, and N. Srikanth, “A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 8, pp. 1793–1798, Aug. 2016, doi: 10.1109/TNNLS.2014.2351391.
[39] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211, Apr. 1990, doi: 10.1016/0364-0213(90)90002-E.
[40] C.-H. Cheng and J.-H. Yang, “Fuzzy time-series model based on rough set rule induction for forecasting stock price,” Neurocomputing, vol. 302, pp. 33–45, Aug. 2018, doi: 10.1016/j.neucom.2018.04.014.
[41] S. Guan and A. Zhao, “A Two-Factor Autoregressive Moving Average Model Based on Fuzzy Fluctuation Logical Relationships,” Symmetry, vol. 9, no. 10, Art. no. 10, Oct. 2017, doi: 10.3390/sym9100207.
[42] H. Guan, Z. Dai, A. Zhao, and J. He, “A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network,” PLoS One, vol. 13, no. 2, p. e0192366, 2018, doi: 10.1371/journal.pone.0192366.
[43] H. Guan, Z. Dai, S. Guan, and A. Zhao, “A Neutrosophic Forecasting Model for Time Series Based on First-Order State and Information Entropy of High-Order Fluctuation,” Entropy, vol. 21, no. 5, Art. no. 5, May 2019, doi: 10.3390/e21050455.
指導教授 李俊賢(Chunshien Li) 審核日期 2022-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明