博碩士論文 109521135 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.220.154.41
姓名 鄭弘祥(Hong-Hsiang Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以短脈衝閘控模式運作之砷化銦鎵/砷化銦鋁 單光子崩潰二極體的特性分析
(Characterization of InGaAs/InAlAs single photon avalanche diode operated with short pulse gated mode)
相關論文
★ 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬
★ 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討★ 具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析
★ 在砷化銦鎵 /砷化鋁銦單光子崩潰二極體中崩潰閃光引致光學串擾之探討★ 改善載子傳輸之砷化銦鎵/砷化銦鋁平台式單光子崩潰二極體的設計與其特性
★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體 元件製作及適當電荷層濃度模擬分析
★ 應用於單光子雪崩二極體之氮化鉭薄膜電阻器的特性探討★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討
★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析★ 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析
★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體
★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析★ 蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-26以後開放)
摘要(中) 單光子感測在光達、量子電腦與量子密鑰傳輸等應用中是相當重要的技
術。本文是以砷化銦鎵為基礎的單光子崩潰二極體進行研究,此元件可應用
於近紅外光纖通訊波段,又因其體積小、堅固、節能且不需致冷降溫,有利
於普及量子資訊科學應用。在光量子通訊與計算中的後端感測器除了須具
備單光子偵測能力,若能有光子數目解析的能力將大幅提升量子通訊的安
全性以及加速量子計算的開發。
單光子崩潰二極體是以脈衝閘壓蓋格模式下操作,以降低缺陷所導致的
後脈衝效應,脈衝的上升與下降邊緣會透過元件接面電容耦合至輸出,與真
實的崩潰訊號疊合,甚至埋沒崩潰訊號,因此需要增加超額偏壓以利辨識出
崩潰訊號,在高超額偏壓下,元件存在大量崩潰載子使得後脈衝效應變得嚴
重,因此在高速應用中常使用自差分電路消除電容耦合雜訊,以辨識微弱崩
潰訊號;又若要使元件具備光子數目解析能力,須讓元件在發生增益飽和之
前就截止,才能讓崩潰載子數量隨入射光子數目變化,因此最直接的作法為
降低閘壓脈衝寬度,此作法可同時降低後脈衝效應以及暗計數率,然而亦會
降低光偵測效率。
因此,本文設計一脈衝寬度調節器,將脈衝訊號分別輸入比較器和由電
阻產生延遲後的比較器的兩端再由及閘將同時輸出為正的訊號輸出,即可
ii
以將原本的脈衝寬度縮減到有效寬度在超額偏壓 3 %溫度為 250 K 時將近
1.1 ns,在短脈衝操作下所產生的微弱崩潰訊號則經由自差分電路可獲得良
好訊雜比。
在短脈衝寬度以及自差分電路的量測下,我們進行砷化銦鎵/砷化銦鋁
單光子崩潰二極體完整特性量測與探討,在有效脈衝寬度 1.1 ns、250 K、
9.9 MHz 的情況下,暗計數率僅 2 % ,與過往實驗室數據相比有大幅度的
降低,同時單光子偵測效率為 52 %,在如此的數據表現下對於光子數目解
析而言具有更大的優勢。
摘要(英) Single photon detection is crucial to many applications, such as lidar, quantum
key distribution, and quantum computing. This thesis focuses on the study of
InGaAs based single photon avalanche photodiodes (SPAD) which can perform
single photon detection in the near infrared including fiber communication bands.
Due to their advantages of compact, robustness, efficient power consumption and
noncryogenic, the development of SPADs is instrumental for the widespread
application of quantum information science. In photonic quantum communication
and computing, the detectors having both the single photon sensitivity and photon
number resolving capability can definitely make a more secure quantum
communication and facilitate the development of quantum computer.
SPAD is usually operated under the gated Geiger mode for suppressing the
afterpulsing effect caused by defects. Under gated mode operation, the fast rising
and falling edge of pulse will be coupled through the junction capacitance of
SPAD to the output, generating a spikelike capacitive response superimposed with
avalanche signal and may bury weak avalanche pulses. Therefore, it is necessary
to increase the excess bias for discriminating the avalanche signal. Under such
high excess bias, there will be lots of avalanche carriers that induce serious
afterpulsing effect. Hence for high-speed applications, self-differencing circuit is
often used to suppress the spike noise for discriminating weak avalanche signal.
Moreover, for gifting SPAD with photon number resolving capability, the
avalanche process should be regulated such that the avalanche carriers become
proportional to the incident photon number. The most intuitive way to regulate the
avalanche process is to reduce the pulse width, which simultaneously eliminate
iv
the afterpulsing effect and reduce the dark count rate. However, it also degrades
the single photon detection efficiency.
In order to get the shorter pulse, we design a pulse width modulator. This
modulator input normal pulse signal into comparator and another comparator
which is delayed by a resistor. Then the “and” gate will output the signal when
the two signal from comparator are positive in the same time. Thus we can
generate a pulse signal with effective pulse width of nearly 1.1 ns at the excess
bias of 3 % and at 250 K.
Coordinating the short pulse operation with a self-different circuit, a very weak
avalanche signal can be successfully discriminated with good signal-to-noise ratio.
We further demonstrate a comprehensive study on the performance of
InGaAs/InAlAs SPAD. Under the condition of pulse width of 1.1 ns, excess bias
of 3 % and at 250 K, the dark count rate (DCR) of 2 % and the single photon
detection efficiency of 52 % are obtained, where the DCR is significantly
improved as compared to past work of our lab. With superior DCR performance
and short pulse operation, we anticipate to perform the photon number resolving
with our homemade SPAD.
關鍵字(中) ★ 短脈衝
★ 砷化銦鎵/砷化銦鋁 單光子崩潰二極體
關鍵字(英)
論文目次 摘要 i
英文摘要 Abstract iii
致謝 vi
目錄 viii
圖目錄 xi
表目錄 xiv
一、緒論 1
1-1前言 1
1-2研究動機與目的 3
二、基本原理與文獻探討 4
2-1單光子雪崩偵測器 4
2-1-1各層材料的特性與比較 4
2-1-2 SAPD工作原理 9
2-1-3 SPAD參數介紹 12
2-1-4 砷化銦/砷化鋁銦單光子雪崩偵測器文獻回顧 17
2-2 光子數目解析偵測器 21
2-2-1 實現方法 21
2-2-2 以單光子雪崩偵測器實現光子數目解析之文獻回顧 21
2-3外部截止電路 24
2-3-1自由運作模式電路 (free running mode circuit) 24
2-3-2閘控模式電路 (Gated mode circuit) 25
三、閘控電路設計 28
3-1脈衝訊號 28
3-2調節板電路設計 29
3-3模擬結果 31
四、實驗方法與設置 35
4-1電流-電壓特性曲線量測 (I-V Characteristics curve) 35
4-2 暗計數量測 38
4-3 SPDE量測 40
4-4 有效脈衝寬度量測 44
五、量測結果與討論 47
5-1 變溫下電流-電壓特性曲線量測結果 (I-V Characteristics curve) 47
5-2變溫下暗計數量測結果 51
5-3變溫下SPDE量測結果 54
5-4變溫下有效脈衝寬度量測結果 56
5-5光子數目解析量測結果 59
六、結果與未來展望 68
參考文獻 69
參考文獻 [1] Jun Zhang, Mark A Itzler, Hugo Zbinden and Jian-Wei Pan. "Advances in InGaAs/InP single-photon detector systems for quantum communication." Light: Science & Applications, 2015.
[2] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice-Hall, 2001.
[3] Wikipedia contributors. (2021, July 2). Time of flight. In Wikipedia, The Free Encyclopedia. Retrieved 16:17, July 3, 2021,
[4] Fabio Acerbi et al. "Design Criteria for InGaAs/InPSingle-Photon Avalanche Diode." IEEE Photonics Journal Volume: 5, Issue: 2, April 2013.
[5] Xiao Meng. "InGaAs/InAlAs single photon avalanche diodes at 1550 nm and X-ray detectors using III-V semiconductor materials." The University of Sheffield, PhD dissertation, August 2015.
[6] Master.Advisor: G. Barbarino, F. T. C Barbato, "The Semiconductor Multiplication System for Photoelectrons in a Vacuum Silicon Photomultiplier Tube and Related Front End Electronics," A pioneering system for a high resolution photodetector: the VSiPMT in November 2016
[7] Meng X, Xie S, Zhou X, Calandri N, Sanzaro M, "InGaAs/InAlAs single photon avalanche diode for 1550 nm photons. " R Soc Open Sci 3(3):150584
[8] Alberto Tosi, Sergio Cova, Franco Zappa, Mark A. Itzler and Rafael BenMichael. "InGaAs/InP Single Photon Avalanche Diode Design and Characterization." European Solid-State Device Research Conference, 2006.
[9] Sheng-Di Lin, Chia-Ming Tsai, Wei-Syun Huang, Tai-Hsiang Liu, Dai-Rong Wu Single-Photon Avalanche Didoe and its Application on Light Detection and Ranging
[10] S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka. "Lucky drift impact ionization in amorphous semiconductors." J. Appl. Phys. vol. 96, pp.2037-2048, 2004
[11] 劉冠廷「蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響」,國立中央大學,碩士論文,民國110年。
[12] A. Panglosse, P. Martin-Gonthier, O. Marcelot, C. Virmontois, O. Saint-Pé and P. Magnan, "Dark Count Rate Modeling in Single-Photon Avalanche Diodes," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 5, pp. 1507-1515, May 2020
[13] H. Finkelstein, M. J. Hsu, S. Zlatanovic, S. Esener,“ Performance Trade-Offs in Single-Photon Avalanche Diode Miniaturization, ” Review of Scientific Instruments. 78, 10, 2007
[14] Jiang, X., Itzler, M.A., Ben-Michael, R., Slomkowski, K., Krainak, M.A., Wu, S. and Sun, X. “Afterpulsing Effects in Free-Running InGaAsP Single-Photon Avalanche Diodes,” Quantum Electronics 44, 3-11,2008
[15] Alberto Tosi, Niccolò Calandri, Mirko Sanzaro and Fabio Acerbi. "Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode." IEEE Journal of Selected Topics in Quantum Electronics Volume: 20, Issue: 6, Nov.-Dec.1 2014.
[16] Fabio Acerbi, Michele Anti, Alberto Tosi, Franco Zappa. "Design Criteria for InGaAs/InP Single-Photon Avalanche Diode." IEEE Photonics Journal, VOL. 5, APRIL 2013.
[17] Yixin Zhang, Xuping Zhang, and Shun Wang. "Gaussian pulse gated InGaAs/InP avalanche photodiode for single photon detection. " OPTICS LETTERS / Vol. 38, No. 5 / March 1, 2013
[18] Alessandro Restelli, Joshua C. Bienfang, and Alan L. Migdall. "Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz. " Cite as: Appl. Phys. Lett. 102, 141104 (2013)
[19] Guang Wu, Yi Jian, E Wu, Heping Zeng. "Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated. "mode 12 October 2009 / Vol. 17, No. 21 / OPTICS EXPRESS 18782
[20] B. E. Kardynal, Z. L.Yuan and A. J. Shields "An avalanche-photodiode-based photon-number-resolving detector " 15 June 2008; doi:10.1038/nphoton.2008.101
[21] S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa. "Avalanche photodiodes and quenching circuits for single-photon detection." APPLIED OPTICS @ Vol. 35, No. 12, April 1996.
[22] Choon Hin Chang "Three Tips for Getting More from Your Function Generator. " keysight 08 28 2020
[23] Jim Williams, "Linear Technology Simple nanosecond-width pulse generator provides high performance."02-08-2018
指導教授 李依珊(Yi-Shan Lee) 審核日期 2022-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明