English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23117352      Online Users : 534
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27789

    Title: An optimal test for the mean function hypothesis
    Authors: Cheng,KF;Wu,JW
    Contributors: 統計研究所
    Date: 1998
    Issue Date: 2010-06-29 19:33:39 (UTC+8)
    Publisher: 中央大學
    Abstract: The conditional mean of the response variable Y given the covariates X = x is an element of R-p is usually modelled by a parametric function g(beta x), where g(.) is a known function and beta is a row vector of p unknown parameters. In this paper, a new method for testing the goodness of fit of the model g(beta x) for the mean function is presented. The new test depends on the selection of weight functions. An expression for the efficacy of the proposed test under a sequence of local alternatives will be given. With the application of this result one can direct the choice of the optimal weight functions in order to maximize the efficacy. The new test is simple in computation and consistent against a broad class of alternatives. Asymptotically, the null distribution is independent of the underlying distribution of Y given X = x. Two pratical examples are given to illustrate the method. Further, simulation studies are given to show the advantages of the proposed test.
    Appears in Collections:[統計研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明