中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/44583
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41873700      在线人数 : 586
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/44583


    题名: 以視訊為基礎之手寫簽名認證;Video-based Handwritten Signature Verification
    作者: 羅尉賢;Wei-Hsien Lo
    贡献者: 資訊工程研究所
    关键词: 簽名認證;曲波變換;移動能量圖;curvelet transform;motion energy image;signature verification
    日期: 2010-07-09
    上传时间: 2010-12-09 13:49:51 (UTC+8)
    出版者: 國立中央大學
    摘要: 本篇論文提出以視訊為基礎進行手寫簽名認證,取代傳統使用的數位手寫板。原因為網路攝影機此項硬體設備比數位手寫板來得普及,較易取得也較便宜,可以降低成本的需求,並且在特徵資訊擷取上,能獲得的資訊也比數位手寫板來的多。傳統使用數位手寫板能擷取的特徵資訊主要集中在文字本身,但若使用網路攝影機,能擷取的資訊除了文字,還包含簽名者握筆姿勢的影像資訊。因此本篇論文提出兩種特徵資訊來進行簽名認證,一是以簽名文字為特徵的靜態資訊,使用曲波變換(curvelet transform)製作成特徵向量,另一是以簽名者握筆姿勢為特徵的動態資訊,使用motion energy image (MEI)製作成特徵向量,將使用上述兩種特徵資訊之認證流程串聯來進行手寫簽名認證,可得良好的結果錯誤接受率0%和錯誤拒絕率0.5%,在模仿簽名的部份錯誤接受率0.05%亦是如此。This paper proposes a video-based handwritten signature verification framework. When acquiring signature information, we use a webcam in substitution for a digitizing tablet. Because webcams are more prevalent and cheaper than digitizing tablets, using webcams as sensors can reduce the cost. In addition, the features extracted using a webcam also contain more information. In tradition handwritten signature verification, features extracted using a digitizing tablet are mainly trajectories. But for the features extracted using a webcam, we can acquire pen grasping posture information of the subscriber in addition to the trajectories of the signature. Therefore, in the proposed framework, we perform video-based handwritten signature verification using two different types of feature information. For the first type of feature, we perform curvelet transform on the subscriber’s writing trajectory to obtain static information. The second type of feature is dynamic information which is the pen grasping posture of the subscriber. The dynamic feature is represented by motion energy image (MEI). We cascade the classifiers using static information and dynamic information to perform handwritten signature verification. The proposed video-based handwritten signature verification framework achieves a low false acceptance rate of 0% and false rejection rate 0.5% for our handwritten signature database without imitation signatures. For the database with imitation signatures, the proposed framework can also achieve a low false acceptance rate of 0.05%.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML626检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明