本論文主要分為兩個部分,第一部份:利用量測砷化鎵異質接面雙極性電晶體的增益壓縮與相位漂移特性,經過公式轉換後取得描述電晶體非線性特性的輸出電壓之實部與虛部對輸入電壓的冪級數係數,再經過計算後用來預測電晶體在實際調變訊號(CDMA IS-95)下對於不同輸入功率的輸出頻譜特性以及鄰近通道功率比例。第二部份:利用0.5 μm pHEMT製程設計3.5 GHz線性化功率放大器,利用共閘級電晶體動態調整功率放大器的偏壓改善功率放大器的線性度。量測結果功率增益、輸出功率、最大功率附加效率分別為11 dB、29 dBm、31 %。0.18 μm CMOS製程設計2.4 GHz線性化功率放大器,利用前饋式元件提供二倍頻訊號消除的路徑改善功率放大器的線性度。量測結果功率增益、輸出功率、最大功率附加效率分別為16 dB、21 dBm、17 %;在輸出功率為12 dBm下,相對星座圖向量誤差量測結果為5.6 %,滿足IEEE 802.11 g系統的規格。The research content divides into two parts: First, measured GaAs-based heterojunction bipolar transistor amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) characteristics. Obtain the power series coefficients of output voltage real part and image part versus input voltage to describe the transistor non-linear characteristics using a formulation. After calculation can prediction the transistors output spectrum characteristics and adjacent channel power ratio under different output power with a CDMA IS-95 signal. Secondly, a 3.5 GHz linearity power amplifier in WIN 0.5 μm pHEMT process, a common gate transistor can adjust power amplifier bias to improve linearity. The power amplifier exhibits power gain of 11 dB, saturation output power of 29 dBm, maximum power-added efficiency of 31 %. A 2.4 GHz linearity power amplifier in TSMC 0.18 μm CMOS process, the feed-forward device offer second harmonic signal injection route to improve linearity. The power amplifier exhibits power gain of 16 dB, saturation output power of 21 dBm, maximum power-added efficiency of 17 %. The measured error vector magnitude was 5.6 % under an output power of 12 dBm using 2.4 GHz IEEE 802.11 g OFDM 64-QAM signal.