English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119244      線上人數 : 1292
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50079


    題名: Application of neural networks for detecting erroneous tax reports from construction companies
    作者: Chen,JH;Su,MC;Chen,CY;Hsu,FH;Wu,CC
    貢獻者: 營建管理研究所
    關鍵詞: DECISION TREES;MODEL;CLASSIFICATION;PERFORMANCE;PREDICTION
    日期: 2011
    上傳時間: 2012-03-27 17:02:59 (UTC+8)
    出版者: 國立中央大學
    摘要: In this study we develop an automatic detection model for discovering erroneous tax reports. The model uses a variety of neural network applications inclusive of the Multi-Layer Perceptrons (MLPs), Learning Vector Quantization (LVQ), decision tree, and Hyper-Rectangular Composite Neural Network (HRCNN) methods. Detailed taxation information from construction companies registered in the northern Taiwan region is sampled, giving a total of 5769 tax reports from 3172 construction companies which make up 35.98% of the top-three-class construction companies. The results confirm that the model yields a better recognition rate for distinguishing erroneous tax reports from the others. The automatic model is thus proven feasible for detecting erroneous tax reports. In addition, we note that the HRCNN yields a correction rate of 78% and, furthermore, generates 248 valuable rules, providing construction practitioners with criteria for preventing the submission of erroneous tax reports. (C) 2011 Elsevier B.V. All rights reserved.
    關聯: AUTOMATION IN CONSTRUCTION
    顯示於類別:[營建管理研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML825檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明