English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42796038      線上人數 : 974
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50085


    題名: Mapping multi-spectral remote sensing images using rule extraction approach
    作者: Su,MC;Huang,DY;Chen,JH;Lu,WZ;Tsai,LC;Lin,JZ
    貢獻者: 營建管理研究所
    關鍵詞: SIMPLIFIED FUZZY ARTMAP;LAND-USE CLASSIFICATION;NEURAL-NETWORK;RECOGNITION;SYSTEMS
    日期: 2011
    上傳時間: 2012-03-27 17:03:06 (UTC+8)
    出版者: 國立中央大學
    摘要: To improve the accurate rate of mapping multi-spectral remote sensing images, in this paper we construct a class of HyperRectangular Composite Neural Networks (HRCNNs), integrating the paradigms of neural networks with the rule-based approach. The supervised decision-directed learning (SDDL) algorithm is also adopted to construct a two-layer network in a sequential manner by adding hidden nodes as needed. Thus, the classification knowledge embedded in the numerical weights of trained HRCNNs can be extracted and represented in the form of If-Then rules. The rules facilitate justification on the responses to increase accuracy of the classification. A sample of remote sensing image containing forest land, river, dam area, and built-up land is used to examine the proposed approach. The accurate recognition rate reaching over 99% demonstrates that the proposed approach is capable of dealing with image mapping. (C) 2011 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[營建管理研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML693檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明