English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42119824      在线人数 : 1422
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51185


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51185


    题名: ALGEBRAIC RELATIONS AMONG PERIODS AND LOGARITHMS OF RANK 2 DRINFELD MODULES
    作者: Chang,CY;Papanikolas,MA
    贡献者: 數學系
    关键词: LINEAR INDEPENDENCE;GAMMA-VALUES;TRANSCENDENCE;MOTIVES
    日期: 2011
    上传时间: 2012-03-27 18:24:21 (UTC+8)
    出版者: 國立中央大學
    摘要: For any rank 2 Drinfeld module rho defined over an algebraic function field, we consider its period matrix P(rho), which is analogous to the period matrix of an elliptic curve defined over a number field. Suppose that the characteristic of the finite field F(q) is odd and that rho does not have complex multiplication. We show that the transcendence degree of the field generated by the entries of P(rho) over F(q)(theta) is 4. As a consequence, we show also the algebraic independence of Drinfeld logarithms of algebraic functions which are linearly independent over F(q)(theta).
    關聯: AMERICAN JOURNAL OF MATHEMATICS
    显示于类别:[數學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML688检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明