In modern geographic information systems, route search represents an important class of queries. In route search related applications, users may want to define a number of traveling rules (traveling preferences) when they plan their trips. However, these traveling rules are not considered in most existing techniques. In this paper, we propose a novel spatial query type, the multi-rule partial sequenced route (MRPSR) query, which enables efficient trip planning with user defined traveling rules. The MRPSR query provides a unified framework that subsumes the well-known trip planning query (TPQ) and the optimal sequenced route (OSR) query. The difficulty in answering MRPSR queries lies in how to integrate multiple choices of points-of-interest (POI) with traveling rules when searching for satisfying routes. We prove that MRPSR query is NP-hard and then provide three algorithms by mapping traveling rules to an activity on vertex network. Afterwards, we extend all the proposed algorithms to road networks. By utilizing both real and synthetic POI datasets, we investigate the performance of our algorithms. The results of extensive simulations show that our algorithms are able to answer MRPSR queries effectively and efficiently with underlying road networks. Compared to the Light Optimal Route Discoverer (LORD) based brute-force solution, the response time of our algorithms is significantly reduced while the distances of the computed routes are only slightly longer than the shortest route.