English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42792308      線上人數 : 1135
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51886


    題名: Using Google latent semantic distance to extract the most relevant information
    作者: Chen,PI;Lin,SJ;Chu,YC
    貢獻者: 資訊管理學系
    關鍵詞: WEB SEARCH;RETRIEVAL;CONTEXT;LENGTH
    日期: 2011
    上傳時間: 2012-03-27 19:08:29 (UTC+8)
    出版者: 國立中央大學
    摘要: There have been many studies about how to help users enter more keywords into a search engine to find the most relevant documents or search results. Methods previously reported in the literature require a database to save the user profile, and construct a well-trained model to provide the potential "next keyword" to the user. Because the predictive models are based on the training data, they can only be used in a single knowledge domain. In this paper, we describe a new algorithm called "Google latent semantic distance" (GLSD) and use it to extract the most important sequence of keywords to provide the most relevant search results to the user. Our method utilizes on-line, real-time processing and needs no training data. Thus, it can be used in different knowledge domains. Our experiments show that the GLSD can achieve high accuracy, and we can find out the most relevant information in the top search results in most cases. We believe that this new system can increase users' effectiveness in both reading and writing articles. (c) 2010 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML577檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明