有機金屬化學氣相沉積法(Metal-Organic Chemical Vapor Deposition, MOCVD)為工業上製作半導體元件最重要的技術之一。而各個開發者之目標皆為透過對於MOCVD進氣系統進行改良,使腔體內可以獲得穩定的熱流場與良好的薄膜成長條件。本研究使用COMSOL Multiphysics軟體進行運算與分析,研究內容主要可分為兩個部分:第一部分為對於行星式腔體內部熱流場與質傳現象進行探討,並於探討腔體進氣系統前選取適當的製程參數,接著透過更改噴射器內部間隔板擺放方式來優化進氣系統流道,藉此提升晶圓上之薄膜成長速率;第二部分則為改善行星式腔體因顆粒堆積於晶圓自旋機構所造成之停機清理問題,藉由於腔體上壁增加噴流進氣口,可對於氣體流動過程中所消耗的TMG進行補充,進而提升晶圓末端之薄膜成長速率。此外,本研究亦透過檔板設計來解決晶圓前端位置薄膜成長速率過高之問題,最終可使晶圓在不自旋情況下即可獲得良好的薄膜成長速率與均勻性。;Metal-Organic Chemical Vapor Deposition, MOCVD, is one of the most important technology to produce the Semiconductor device in the industry. The goals of all the developers are to get the stable thermal-flow field and great condition of depositing the thin film. The way to achieve the goals is to improve the original inlet system of MOCVD. In this study, the numerical software COMSOL was used to calculate and analyze the MOCVD system. In first part, the numerical method was applied to investigate the thermal-flow field and the phenomenon of the mass transfer inside the reactor. Besides, the numerical method was also applied to find the best range of the process parameter before this study start to investigate the inlet system. In the end, this study try to improve the growth rate by adjust the barrier inside the Injector. In second part, our goal is to overcome the issue of the accumulation inside the rotate component for the wafer. By adding the gas inlet on the top of the reactor, the flow can supply the TMG and improve the growth rate at the end of the wafer. In addition, this study also using the barrier to reduce the exorbitant growth rate at the front of the wafer. In the end, the new design can get the great growth rate and uniformity without the wafer rotate.