中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/77942
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47125125      Online Users : 504
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77942


    Title: 齊次多項式 H∞ 靜態輸出回授控制 -連續/離散系統;Polynomially Static Output Feedback H∞ Control via Homogeneous Lyapunov Functions for Continuous- and Discrete-time Systems
    Authors: 楊宇軒;Yang, Yu-Xuan
    Contributors: 機械工程學系
    Keywords: 平方和;多項式模糊系統;尤拉齊次多項式定理;H_∞ 靜態輸出回授控制;Sum of squares;Polynomial fuzzy systems;Euler’s theorem;H_∞ static output feedback control
    Date: 2018-08-15
    Issue Date: 2018-08-31 15:04:37 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文主要研究多項式模糊系統之靜態輸出回授控制器設計,使 用齊次多項式李亞普諾夫函數 (Lyapunov function) 及其對時間的導數 作為穩定條件,並同時滿足 H∞ 性能指標。本論文研究靜態輸出回授 是因為它比狀態回授能夠更廣泛的應用到實務上,而靜態輸出回授增 益設計,分別探討連續以及離散系統。連續系統中利用尤拉齊次多項 式定理建立李亞普諾夫函數 (Lyapunov function),其形式為
    V (x) = xT P (x)x = 1 xT ∇xxV (x)x g(g − 1)
    離散系統為避免非二次齊次多項式李亞普諾夫函數 (Lyapunov function) 在其中發生問題,在本論文中將令李亞普諾夫函數 (Lyapunov function) 為
    V ( x ) = x T P − 1 ( x ̃ ) x
    其中 x ̃ 為系統狀態向量 x 裡不直接被控制器影響的系統狀態集合而 成。此限制可使後續電腦模擬時可行,內文中將詳細說明。
    電腦模擬方面以平方和方法 (Sum-of-Squares) 來檢驗模糊系統的 穩定條件,並設計靜態輸出回授控制器。;In this thesis, we investigate H∞ control problem for both continuous- and discrete-time polynomial fuzzy systems, and to design static output feed- back controllers. The stabilization of the underlying systems can be proved via homogeneous Lyapunov method. This thesis studies static output feed- back control that is more appropriate in practical than state feedback con- trol. In continuous-time systems, Euler’s homogeneous polynomial theorem is used to formulate a Lyapunov function. It has the following form
    V (x) = xT P (x)x = 1 xT ∇xxV (x)x g(g − 1)
    In discrete-time systems, the Lyapunov function is formulated by
    V ( x ) = x T P − 1 ( x ̃ ) x
    where x ̃ are part of x that are not directly affected by the control input. This restriction is to avoid problems when doing simulation. The details will be described later.
    In numerical simulations, examples are solved via the sum-of-squares approach.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML233View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明