中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/82868
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41696634      Online Users : 1555
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82868


    Title: A Novel Multi-Task-Agents Reinforcement Learning with Multi-Dimensional Action Space
    Authors: 李沅紘;Lee, Yuan Hung
    Contributors: 資訊工程學系
    Keywords: 機械學習;強化學習;多維度動作空間;多玩家;星海爭霸2;Machine learning;Reinforcement learning;multi dimension action space;multi agent;StarCraft2
    Date: 2020-01-15
    Issue Date: 2020-06-05 17:38:29 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 於硬體大幅的進步,使得強化學習(Reinforcement learning)可以實作並在AI領域帶來新的革新技術,也成為受人歡迎的領域。他可以應用在難以預測的環境上有良好的效果。先前關於強化學習的研究大部分專注在一個玩家在一維度且小範圍動作空間環境,但是多玩家可以處理空間更大互動更多的環境。強化學習其中一項有挑戰性的困難點在多任務的互動行為。本論文中我們提出了一種新型的model,模型透過多個玩家的合作在多任務和多維度動作空間來得取高分。此外我們提出可行的方式來分解巨大的動作空間及減少硬體內存需求和減少計算時間來提高效果。在StartCraft2平台上進行了性能評估,以證明迷你遊戲的有效性。實驗結果表明,所提出的方法在所有指標上均明顯優於比較模型。;Owing to the great advance of hardware techniques, RL (Reinforcement learning) can implement and become popular technique to interact with unpredictable environment. Most prior studies of successive RL model only focus on interaction between single agent and environment with single task and small action space. However, the multi-agent can solve more problem. One of RL challenge task is interaction in multi task environment. In this paper, we propose a novel RL model to interact with the multi task and multi dimension action space environment well through cooperation of agents. In addition, we propose a feasible way to decompose action space to reduce memory size and calculation, and improve the effect. The performance evaluations are conducted on the StartCraft2 platform to demonstrate the effectiveness of mini-games. The experimental results show that the proposed methods significantly outperform the state-of-the-art models in all metrics.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML99View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明