中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/82868
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41693659      在线人数 : 1731
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/82868


    题名: A Novel Multi-Task-Agents Reinforcement Learning with Multi-Dimensional Action Space
    作者: 李沅紘;Lee, Yuan Hung
    贡献者: 資訊工程學系
    关键词: 機械學習;強化學習;多維度動作空間;多玩家;星海爭霸2;Machine learning;Reinforcement learning;multi dimension action space;multi agent;StarCraft2
    日期: 2020-01-15
    上传时间: 2020-06-05 17:38:29 (UTC+8)
    出版者: 國立中央大學
    摘要: 於硬體大幅的進步,使得強化學習(Reinforcement learning)可以實作並在AI領域帶來新的革新技術,也成為受人歡迎的領域。他可以應用在難以預測的環境上有良好的效果。先前關於強化學習的研究大部分專注在一個玩家在一維度且小範圍動作空間環境,但是多玩家可以處理空間更大互動更多的環境。強化學習其中一項有挑戰性的困難點在多任務的互動行為。本論文中我們提出了一種新型的model,模型透過多個玩家的合作在多任務和多維度動作空間來得取高分。此外我們提出可行的方式來分解巨大的動作空間及減少硬體內存需求和減少計算時間來提高效果。在StartCraft2平台上進行了性能評估,以證明迷你遊戲的有效性。實驗結果表明,所提出的方法在所有指標上均明顯優於比較模型。;Owing to the great advance of hardware techniques, RL (Reinforcement learning) can implement and become popular technique to interact with unpredictable environment. Most prior studies of successive RL model only focus on interaction between single agent and environment with single task and small action space. However, the multi-agent can solve more problem. One of RL challenge task is interaction in multi task environment. In this paper, we propose a novel RL model to interact with the multi task and multi dimension action space environment well through cooperation of agents. In addition, we propose a feasible way to decompose action space to reduce memory size and calculation, and improve the effect. The performance evaluations are conducted on the StartCraft2 platform to demonstrate the effectiveness of mini-games. The experimental results show that the proposed methods significantly outperform the state-of-the-art models in all metrics.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML99检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明