English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40889529      線上人數 : 1294
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86641


    題名: 應用深度學習以心理特徵與自然語言預測網路霸凌行為;Prediction of Cyberbullying by Deep Learning with Natural Language and Psychology Features
    作者: 黃柏鈞;Huang, Po-Chun
    貢獻者: 資訊管理學系
    關鍵詞: 深度學習;情緒;情感極性;網路霸凌;五型人格;Deep learning;Emotion;Sentiment polarity;Cyberbullying;Big Five personalities
    日期: 2021-08-02
    上傳時間: 2021-12-07 13:03:39 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究旨在提出架構以心理特徵(數值)結合文本應用深度學習預測網路霸凌行為,不同於過去研究只由文本或心理特徵(數值)的單一方式訓練模型進行預測,本研究擬調用IBM API分析網路貼文中的情緒、情感以及發文者的五型人格傾向。文本方面,本研究使用的詞嵌入模型有GloVe與Word2Vec,並依據實驗結果提出較適合本研究的詞嵌入模型。
      在文本結合心理特徵(數值)輸入雙向長短期記憶神經網路串接全連接神經網路的部分則較單純使用心理特徵(數值)輸入全連接神經網路在各項指標中更佳,在epoch (訓練期數)本研究實驗10、20與30的組合,在epoch為20的情況下在各項指標的結果最佳。比較epoch同為20的狀況下loss值由0.3673下降至0.2842,F1 score提升近6% 。除了進行網路霸凌行為預測外,本研究亦探討各個心理特徵與網路霸凌行為間的相關性。
      本研究結果可提供社群媒體網站一個預測機制,應用於預警或篩選出含有網路霸凌成分的貼文,並提供給社群媒體平台經營方,即早覺察在文本中顯露出的相關負面人格、情緒與情感。避免惡意傷害的貼文對網路使用者造成傷害。
    ;This research aims to propose a new method to predict cyberbullying behavior by combining psychology features with text. Each of the many posts on the Internet contains their own emotions, personalities and their sentiments at the moment of posting. These emotions, sentiments and personalities can be identified through applications. In terms of text, the Word Embedding methods used in this study are GloVe and Word2Vec. We compared them and proposed the methods which more suitable for this study. It is different from the past research that only used a one-way information method of text or psychology features values to train models to make predictions.  
      The use of text and psychological features, in contrast of purely using numerical data, loss value drops from 0.3673 to 0.2842 and F1 score increase by nearly 5% under the same epoch. This study in the epoch (Number of training periods) has experimented with a combination of 10, 20, and 30, the results of each metrics are the best when the epoch is 20. In addition to predicting cyberbullying, this research also explores the correlation between various psychological features and cyberbullying.
      The results of this research confirmed our proposed approach to be a useful detection mechanism for social media websites to provide an early warning or to screen out maliciously posts occurred in Internet.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML83檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明