English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41627870      線上人數 : 2489
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86730


    題名: 在只有部份疾病訊息狀況下,有關二元診斷篩檢法之二個概似比特徵之概似推論方法;Likelihood methods for inference about the likelihood ratios of a binary diagnostic test in the presence of partial disease verification
    作者: 劉亞幸;Liu, Ya-Hsing
    貢獻者: 數學系
    關鍵詞: 概似函數;二元資料;驗證偏差;疾病訊息缺失;Likelihood ratio test;Binary data;Verification bias;Missing data
    日期: 2021-07-28
    上傳時間: 2021-12-07 13:09:52 (UTC+8)
    出版者: 國立中央大學
    摘要: 在醫學研究中,常使用二元診斷法來估計正概似比(positive likelihood ratio)與負概似比(negative likelihood ratio),當遇到疾病訊息缺失時,要估計正概似比與負概似比往往相對困難些,本文針對疾病訊息是否有缺失時提出了概似函數方法。在獨立的伯努利概似函數推論下,可得到分數檢定、華德檢定與概似檢定。本文利用模擬與實例分析分別比較概似函數方法、Montero-Alonso與Roldan-Nofuentes (2018) 提出的華德檢定、Simel et al. (1991) 納皮爾概似比檢定與Walter (1975) 概似比檢定的型一誤差的機率、信賴區間上下界與覆蓋率,可發現本文的模型在解決疾病訊息缺失問題中更具優勢。;In medical research, the classic parameters use to assess the accuracy of a binary diagnostic test are the positive likelihood ratio and the negative likelihood ratio.The presence of missing data, When the disease information is missing, the positive likelihood ratio and the negative likelihood ratio are difficult to estimation.The article considers the disease information is missing or not, proposd the likelihood function method. The article use independent binary likelihood function, inferenced score test, wald test and likelihood ratios test statistics.We use simulation and real data analysis to demonstrate the merit of our new parametric robust technique. We also make comparison with to the wald test proposed by Montero-Alonso and Roldan-Nofuentes (2018), the Napierian likelihood test statistics proposed by Simel et al. (1991) and the likelihood test statistics proposed by Walter (1975).
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML90檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明