English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625599      線上人數 : 1974
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/88208


    題名: 透過機器學習預測美國職棒大聯盟球員薪資;Using Machine Learning to predict salaries of Major League Baseball players
    作者: 李承祐;Lee, Cheng-Yu
    貢獻者: 企業管理學系
    關鍵詞: 美國職棒;限梯度提升;支援向量機;鄰近法;薪資預測;分類;MLB;XGBoost;SVM;KNN;Predicting Salaries;Classification
    日期: 2022-06-29
    上傳時間: 2022-07-13 19:00:03 (UTC+8)
    出版者: 國立中央大學
    摘要: 美國職棒大聯盟(MLB, Major League Baseball)是全世界具有龐大關注度的運動之
    一,近年來除了關注球員以及球隊的表現外,球員的薪資也是球迷討論中的焦點之一,
    總會引起球迷的討論,也會開始檢視該球員的表現是否真的符合他的身價。
    所以如何評估球員薪資的依據一直是很熱門的話題,最直接的依據就是球員在比賽
    中的成績表現,除了球員本身在賽場上所呈現的數據表現外,許多學者也提出一些可能
    會影響球員薪資的變數。目前已經有許多關於大聯盟薪資的研究,影響薪資的原因有很
    多種,甚至有學者將球員分成投手與打者兩者進行分析。
    因此本研究致力於將球員當年度的薪資與隔年度的薪資漲幅做區間,利用機器學習
    的方法,如極限梯度提升(XGBoost)、支援向量機(SVM)與 K 鄰近法(KNN)建構分類
    (Classificaition)預測模型,除了建構預測球員薪資漲幅的模型,也利用極限梯度提升去
    驗證我們在本研究所新增的變數,結果顯示本研究所新增的變數可以做為預測薪資的依
    據。
    ;Major League Baseball is one of the most watched sports in the world. In recent years, in
    addition to focusing on the performance of a player and his team, a player′s salary has also been a
    focus of fan discussion, always generating discussion and beginning to examine whether a player′s
    performance really matches his worth.
    Therefore, how to evaluate the salary of players has always been a hot topic. The most direct basis
    is the performance of players in the game. In addition to the statistical performance of players on
    the field, many scholars have also proposed some variables that may affect the salary of players. At
    present, there have been many studies on the salary of major league baseball, and there are many
    reasons for the influence of salary. Some scholars even divide the players into pitcher and hitter for
    analysis.
    Therefore, this study focused on the players into the compensation to the annual salary increase do
    interval, using machine learning methods, such as limit gradient (XGBoost) and support vector
    machine (SVM) and K Nearest Neighbor (KNN) to do a classficiation prediction model, in addition
    to build models of forecasting player salary increase, also use limit gradient to validate our new
    variables in this research institute, the results show that the new variables can be predicted as salary
    in our study.
    顯示於類別:[企業管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML104檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明