本論文將探討碲和銻在銀(111)表面上,控制蒸鍍時間及退火溫度,其表面重構的變化。我們在超高真空的環境,在室溫下使用電子束物理氣相沉積(Electron-Beam Physical Vapor Deposition, EB-PVD)的方式將碲和銻鍍至生長在新鮮劈裂的白雲母的銀(111)上,並利用低能電子繞射(Low-Energy Electron Diffraction, LEED)和歐傑電子能譜儀(Auger Electron Spectroscopy, AES)來研究其表面的結構變化和元素成分變化。在單獨蒸鍍碲的實驗中,碲在銀(111)表面形成了碲化銀(AgTe)的結構,在碲化銀覆蓋率約1/3 ML時透過低能電子繞射觀測到最清晰的(√3×√3)R30°繞射結構,而在碲化銀覆蓋率略大於1/3 ML時,原有的(√3×√3)R30°繞射點變得模糊且出現一組額外內部三重對稱的繞射點。在碲和銻共鍍的實驗中,透過歐傑電子能譜儀發現表面上幾乎只有來自碲的訊號,僅有非常小的來自銻的訊號,同時在低能電子繞射的量測也只表現出如蒸鍍碲的結構變化。而當對此樣品進行一次的濺射清潔與退火後,則會發現大量的銻訊號出現在表面,推測是共鍍後銻在表面上形成了三維的簇狀結構。;We have investigated the surface reconstruction of Te and Sb on Ag(111) with varied deposition time and annealing temperature. We used electron-beam physical vapor deposition (EBPVD) to deposit Te and Sb on the Ag(111) film grown on freshly cleaved mica. The surface reconstructions and elemental compositions of the surface were characterized with Low-Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES). When Te was deposited on Ag(111), AgTe was formed, and the sharpest (√3×√3)R30° reconstruction was observed at 1/3 ML of coverage. The spots became blurred and an additional set of internal triple symmetrical spots appears. In the experiments with Te and Sb co-deposition, it was found that the Auger signal on the surface was almost exclusively from Te with only a very small signal from Sb, and the measurement of LEED showed the same reconstruction as in the case of the Te deposition. After sputtering and annealing the sample, a large Sb signal was found on the surface, suggesting that a three-dimensional Sb clusters were formed after Te and Sb co-deposition.