摘要: | 本論文主要可分為有機薄膜電晶體 (OFET)、染料敏化太陽能電池 (DSSC) 和鈣鈦 礦太陽能電池 (PSC) 的材料開發。 有機薄膜電晶體 (OFET) 的部分分為 N-type 及 P-type 材料,本研究成功以 TII 為核心,開發出四種不同碳鏈之醌型結構材料,包含 TIIQ-10、TIIQ-b8、TIIQ-b16 和 TIIQ-b17,其中 TIIQ-b16 在 N-type OFET 中表現出高達 2.54 cm2 V -1 s -1 的電子遷移 率,電流開關比為 105 ~106,具有單極電子傳輸特性和強環境穩定性。同時成功以 DTTR 為 核心,外接不同共軛基團,開發另一系列材料 DFPT-DTTR 及 DFPbT-DTTR,其中 DFPT DTTR 在 P-type OFET 中表現出高達 0.48 cm2 V -1 s -1 的電洞遷移率。 鈣鈦礦太陽能電池 (PSC) 的部分,本研究利用 BCDT 作為核心,接上不同苯基烷 氧鏈,再分別於末端接上拉電子基團 IN、INCl 與 INBr,共開發出六種材料 INBCDT-8、 INBCDT-b8、INClBCDT-8、INClBCDT-b8、INBrBCDT-8、INBrBCDT-b8,其中以 INBrBCDT-b8 應 用於 PSC 中可獲得高達 22.20% 的 PCE 值,FF 值為 79%,JSC 值為 24.44 mA cm-2,VOC 值為 1.15 V ,還可有效地鈍化表面缺陷並增強元件界面處的電荷傳輸能力。同時成功合 成出以 maleimide 為核心的材料 MLIBP’-4D,其 PCE 值高達 21.20%。 目前已成功合成出應用於 OFET、DSSC 和 PSC 的共軛醌型化合物、有機染敏材料 和電洞傳輸材料,這些新材料經由 UV-Vis 及 DPV 測量其光學及電化學性質、DSC 及 TGA 測量其熱穩定性,且利用 X 射線衍射、原子力顯微鏡 (AFM) 和掠入射 X 射線衍射 (GIXRD) 了解分子結構、分子堆疊、薄膜形態、結晶度和元件效能之間的關係,多項材料 應用之光電元件正在優化中。;A number of small molecular organic semiconductors have been designed and synthesized for various organic electronics device applications such as organic field-effect transistors (OFETs), dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). The optical, and electrochemical properties of these newly synthesized materials were examined using differential pulse voltammetry (DPV), and UV-Visible absorption spectroscopy. Thermal properties were investigated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Thin-film microstructure and film morphology were examined by X-ray diffraction, atomic force microscopy (AFM), and grazing incidence X-ray diffraction (GIXRD) to understand the relationship between the molecular structure, film morphology/crystallinity, and device performance. The molecular structures of organic semiconductors and their molecular packing properties were determined by single-crystal X-ray diffraction. In this research, air-processed TIIQ-b16 OFETs exhibit electron mobility up to 2.54 cm2 V −1 s −1 with a current ON/OFF ratio of 105–106 exhibiting unipolar electron transport characteristics and enhanced ambient stability. DFPT-DTTR compound based OFETs exhibit efficient hole transport mobility up to 0.48 cm2 V −1 s −1 . Non-fullerene acceptor (INBrBCDT-b8) was used as an anti-solvent in PSCs yielding an excellent PCE of up to 22.20% with FF of 79%, a JSC of 24.44 mA cm-2 , and a VOC of 1.15 V, also effectively passivate surface defects and enhance charge transport at the device interface. Further, maleimide-based HTM (MLIBP’-4D) with tetra-substituted triphenylamine donors exhibits high performance PCE reaching up to 21.20 % in PSCs. Several conjugated quinoidal compounds, organic dyes, and hole-transporting materials (HTMs) have been synthesized for OFETs, DSSCs, and PSCs, respectively. Presently, device characterization and optimization of these newly developed small molecules are in progress for future publications. |