中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89437
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 46926513      Online Users : 678
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89437


    Title: 以消費者意圖為基礎的商品推薦 以生鮮超市為例;Product Recommendation for Supermarket Industry – A Consumer Intension-Based Approach
    Authors: 張安媞;Chang, An-Ti
    Contributors: 企業管理學系
    Keywords: 消費者意圖;自然語言處理TF-IDF;文本分析LDA;最小生成樹;商品推薦;關聯法則;超商行銷;Shopping Mission;Term Frequency–Inverse Document Frequency;Latent Dirichlet Allocation;Minimum Spanning Tree;Product Recommendations;Association Rule;Supermarket Marketing
    Date: 2022-09-30
    Issue Date: 2022-10-04 11:14:41 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 對零售商而言,每天都有大量的交易資料產生,如何善加利用手上資料來更了解消費者並進行行銷活動是件重要的事情,其中包括進行消費者區分、了解消費者行為和進行商品推薦,在過往常會利用RFM(recency, frequency and monetary) 或是PPS(Purchased products structure) 分析來進行消費者區分,然而本研究則透過TF-IDF及LDA分析方法來尋找消費者意圖,以此進行消費者區分,並運用區分好的消費者意圖,以MST(minimum spanning tree)進行購物籃分析來了解消費者行為和找出關鍵產品,最後運用Lift值計算出關鍵產品排序,藉此找出不同消費者意圖下的消費行為並進行商品推薦。;For retailers, a large amount of transaction data is generated every day, how to make good use of the data at hand to better understand consumers and carry out marketing activities is important, including consumer differentiation, understanding consumer behavior and conducting product recommendation. For customer segmentation in the past, Recency, Frequency and Monetary (RFM) or Purchased products structure (PPS) analysis was usually used. However, this study uses Term Frequency–Inverse Document Frequency (TF-IDF) and Latent Dirichlet Allocation (LDA) analysis methods to find consumer intentions to use on customer segmentation. Base on the segment of consumer intentions to conduct shopping basket analysis with Minimum Spanning Tree (MST) to understand consumer behavior and find the key products. Finally, use Lift score to calculate the key product ranking, so as to find out the consumption behaviors under different consumer intentions and make product recommendations.
    Appears in Collections:[Graduate Institute of Business Administration] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML183View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明