English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41629022      Online Users : 3335
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89643


    Title: Sparse Bayesian Estimation with High-dimensional Binary Response Data
    Authors: 吳宣廷;Wu, Xuan-Ting
    Contributors: 統計研究所
    Keywords: 貝葉斯;高維度;邏輯式模型;貝式推論;三參數beta 正態;Bayesian;high-dimensional;logistic model;Bayesian Inference;Three Parameter Beta Normal
    Date: 2022-09-15
    Issue Date: 2022-10-04 11:50:37 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 我們在具有高維矩陣值協變量數據的邏輯線性模型中考慮貝葉斯估計,特別是在超高維數據中。這項研究的動機是在經典的邏輯式模型中擴展貝葉斯方法。所提出的估計可以應用於在分類方法上,比較多的案例是有關於有無疾病,事件的是否發生,例如張量判別分析以及常見的成像研究、遺傳學等。我們用模擬研究和陶瓷樣品的化學成分數據集來展示所提出的方法。;We consider Bayesian estimation in a logistic linear model with high-dimensional matrixvalued covariate data, especially in ultra-high-dimensional data. The motivation for this
    study is to develop the Bayesian approach in classical logistic-style models. The proposed estimates can be applied to classification problems, most of which are related to the presence or absence of diseases and the occurrence of events, such as tensor discriminant analysis and common imaging studies, genetics, etc. Simulation studies and a dataset of the chemical composition of a dataset demonstrate the proposed method.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML78View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明