English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 25466246      Online Users : 261
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89774

    Title: 應用二階段訓練於中國古代文獻釋義識別的弱監督學習架構;SPITAC: Weakly Supervised Learning for Paraphrase Identification with Two-Stage Training in Ancient Chinese Literature
    Authors: 朱彥慈;Chu, Yen-Tzu
    Contributors: 資訊工程學系在職專班
    Keywords: 數位人文;釋義識別;文本對齊;弱監督學習;深度學習;Digital Humanities;Paraphrase Identification;Text Alignment;Weakly supervised learning;Deep Learning
    Date: 2022-09-23
    Issue Date: 2022-10-04 11:59:13 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在應用於中國古代文獻的數位人文領域中,已有些研究探討如何實現文本對齊技術來幫助歷史學者比較不同的文獻,不過這些研究並沒有以「相同語意」的觀點來對齊文本。
    然而如果要採用釋義識別任務中最先進的自然語言處理技術,則會有一些限制需要去考量:(1)訓練資料不足 (2)基於注意力方法的文本長度限制。
    從實驗結果表明,本研究的弱監督學習方法可以達到接近監督式學習的效果,而在消融實驗中,句子過濾器和二階段訓練可以有效提升性能,能提高4.14 F1分數並超越基線模型。最後本研究將從實際的文本中演示並分析此方法的成果,並從成效中探討這項任務的困難及未來改進方向。;Text alignment techniques have been studied in digital humanities research of ancient Chinese literature to assist historians in aligning the documents. Nevertheless, these studies didn′t align text in the "same meaning" perspective.
    In our work, we introduce paraphrase identification, the natural language processing(NLP) task that identifies whether the two texts convey the "same meaning", into Digital Humanities of Ancient Chinese literature and apply it to Book of the Later Han, Records of the Three Kingdoms, and Zizhi Tongjian as examples.
    However, if we employ SOTA methods to paraphrase identification, some limitations need to be taken into account: (1) insufficient train data and (2) text length limitation of the attention-based method.
    To handle these issues, we propose the Weakly Supervised Learning for Paraphrase Identification with Two-Stage Training in Ancient Chinese Literature(SPITAC).Our proposed scheme consists of two components: pseudo-label training set generation and two-stage training.The pseudo-label training set generation is based on the rule-based method to generate the training dataset automatically to overcome the lack of train data issue.To handle the problem of text length limitation, we adopt the sentence filter approach to delete unimportant sentences and shrink the text to less than the maximum length.The two-stage training enables the classifier to identify the hard negative samples more efficiently to improve the model performance.
    The experiment results show that our weakly supervised approach can achieve the results of nearly the supervised learning method.In the ablation study, our proposed scheme, sentence filter and two-stage training, can improve the F1 score by 4.14 compared to the baseline.Finally, we demonstrate and analyze the instances to show the effect of our method and indicate the future challenges for this task.
    Appears in Collections:[資訊工程學系碩士在職專班 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明