English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42792425      線上人數 : 1124
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89882


    題名: 應用景氣指標、PMI採購經理人指數以機器學習建構台灣股價預測模型;Application of Business Indicators and Purchasing Managers’ Index with Machine Learning for Taiwan Stock Price Prediction
    作者: 林佩萱;Lin, Pei-Hsuan
    貢獻者: 資訊管理學系在職專班
    關鍵詞: 景氣指標;PMI製造業採購經理人指數;NMI非製造業採購經理人指數;機器學習;股價預測;永續;business Indicators;Purchasing Managers’ Index;Non-manufacturing Purchasing Managers′ Index;machine learning;stock price prediction;sustainability
    日期: 2022-08-22
    上傳時間: 2022-10-04 12:03:22 (UTC+8)
    出版者: 國立中央大學
    摘要: 薪資漲幅跟不上通貨膨脹率,如何利用投資增加收入對抗通貨膨脹已經是全民重要課題。由於台灣屬淺碟型經濟體,對海外市場需求高,缺乏吸收震盪的能力,就如同淺碟子般,只要市場上有些微風險即會產生經濟波動,並會反映在股市上,且投資者在選擇投資標的時往往只有對各別產業進行分析,不論基本面或技術面分析皆也只能針對單一個股,忽略產業的獲利表現可能會受到市場風險的影響,且各種產業受景氣的影響程度不同,可能導致在同個景氣階段下營利表現也不同。
    景氣指標與股價有高度相關,因此本研究以景氣指標和PMI、NMI採購經理人指數構成元素作為預測指標,並搭配個股基本面、技術面及籌碼面指標,減少個股受整體景氣影響導致誤判,進而彌補基本面、技術面與籌碼面分析的不足,再針對各產業分別用該產業的指標,以台灣股市為標的,並同時帶入AdaBoost (Adaptive Boosting)、人工神經網路 (Artificial Neural Network, ANN)、決策樹 (Decision tree, DT)、梯度增強 (Gradient Boosting, GB)、K-近鄰演算法 (K-nearest Neighbors, kNN)、邏輯式迴歸 (Logistic Regression, LR)、單純貝氏分類器 (Navie Bayes, NB)、隨機森林 (Random Forest, RF)、隨機梯度下降法 (Stochastic Gradient Descent, SGD)及支援向量機 (Support Vector Machine, SVM)等十種機器學習方法建立預測模型,以有效推估未來的趨勢,作為台灣股票投資者參考。;According to the high inflation rate, an efficient investment seems to be a great issue nowadays, especially in countries with thin market like Taiwan. This paper constructed predictive models by using ten kind machine learning method with Economic Indicators for stock price trend prediction.
    In this paper, we investigated and done experiments to verify the correlation between Business Indicators and stock price. Revealing that there are three kind Economic Indicators highly correlate with stock price which are Business Indicators, Purchasing Managers’Index (PMI), and Non-manufacturing Purchasing Managers′ Index (NMI). We predicted Taiwan’s stock price trend by using 10 machine learning method, including Adaptive Boosting, Artificial Neural Network (ANN), Decision Tree (DT), Gradient Boosting (GB), K-nearest Neighbors (kNN), Logistic Regression (LR), Navie Bayes (NB), Random Forest (RF), Stochastic gradient descent (SGD) and Support Vector Machine (SVM) with the Business Indicators mentioned above.
    顯示於類別:[資訊管理學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML125檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明