中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/91903
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 44360146      Online Users : 1385
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/91903


    Title: 利用機器學習於邊坡光學與紅外線熱成像融合之長期穩定性監測評估;The evaluation of slope monitoring using optical and thermal images fusion through machine learning
    Authors: 曾得瑋;Tseng, Te-Wei
    Contributors: 土木工程學系
    Keywords: 光學成像;紅外線熱成像;機器學習;變化檢測;邊坡災害防治;Optical imaging;Infrared thermal imaging;Machine learning;Change detection;Slope monitoring
    Date: 2023-07-28
    Issue Date: 2024-09-19 14:42:10 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 山坡地的變化和移動量始終為其是否會坍塌的重要因素,以安全 性高、安裝成本低、機動性高的數位攝影測量方式,長時間地對山坡 地進行拍攝及觀測,可以有效地確保山坡地的穩定性。
    本研究旨在將光學成像技術、紅外線熱成像技術與機器學習方法結合,並且用於雙時段圖像的變化檢測上。利用微型單板電腦—樹梅派結合兩鏡頭模組,通過在現場同一位置但不同時間拍攝的圖像,以機器學習的方式,讓電腦預測雙時段光學圖像組中的變化位置;以數值處理的方式,讓電腦計算雙時段紅外線熱圖像組中的溫度變化。
    本研究先經室內模型實驗,使用自行收集的圖像組,訓練機器學習模型,以此對變化檢測模型進行可行性分析和檢驗,後再將監測系統移至室外,在現有坡地旁架設測站,根據監測結果顯示,本研究之方法能夠有效地在室外環境下進行長時間地監測作業,在國立中央大學停車場變化檢測的 mean F1-score 和 mean IoU 分別能達到 0.9359 和 0.8850,而在新北市瑞芳區南雅里的成效良好。
    ;The change and displacements of slopes has always been an important
    factor in determining whether they will collapse. Digital photogrammetric
    methods, which are characterized by high safety, low installation cost, and
    high mobility, can effectively ensure the stability of slopes by continuously
    capturing and observing them over a long period of time. This study aims
    to combine optical imaging technology, infrared thermography, and
    machine learning methods for change detection in dual-temporal images.
    By utilizing a micro single board computer, specifically the Raspberry Pi,
    in combination with two camera modules, images are captured at the same
    location but at different times. Through machine learning, the computer
    can predict the locations of changes in the bi-temporal optical image set.
    Numerical processing is used to calculate temperature changes in the bi-
    temporal infrared thermographic image set. Initially, indoor model
    experiments were conducted using a self-collected set of images to train
    the machine learning model and analyze the feasibility and effectiveness
    of the change detection model. Subsequently, the monitoring system was
    deployed outdoors, setting up a monitoring station near existing slopes.
    The monitoring results demonstrated that the proposed method in this study
    can effectively perform long-term monitoring operations in outdoor
    environments. The change detection score of mean F1-score and mean IoU
    in the parking lot of National Central University can reach 0.9359 and
    0.8850 respectively, showcasing good performance in the Nanya Village,
    Ruifang District, New Taipei City.
    Appears in Collections:[Graduate Institute of Civil Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML36View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明