English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42794534      線上人數 : 1052
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93134


    題名: 類股輪動為基礎之神經網路趨勢預測-以台灣市場金融股為例;Neural Network Trend Forecasting Based on Stock Rotation - A Case Study on Financial Stocks in the Taiwan Market
    作者: 王怡如;Wang, Yi-Ju
    貢獻者: 資訊管理學系在職專班
    關鍵詞: 類股輪動;神經網路;股價預測;Sector rotation;Neural network;Stock price prediction
    日期: 2023-07-03
    上傳時間: 2024-09-19 16:43:59 (UTC+8)
    出版者: 國立中央大學
    摘要: 本文以台灣地區上市公司為研究對象,採用 2008 年 1 月至 2023 年 4 月期間的類股指數丶期貨指數資料及金融股個股股價,建立股價預測模型。本研究希望可以先從類股中發掘相關的輪動趨勢,以此預測下一批資金將投入的類股,在產業類股起漲前,可以提前佈局。主要使用 Transformer 模型探討股價預測問題,希望藉由模型的預測,預先得知股票漲跌趨勢,提供投資人做為交易的參考,能夠讓投資人降低投資風險,增加投資報價率。除了使用 Transformer 模型之外,並嘗試將類股輪動因素加入實驗中,驗證是否可以有效的增進股價預測正確性。;This article focuses on listed companies in Taiwan and establishes a stock price prediction model using sector index data, futures index data, and financial stock prices from January 2008 to April 2023. The study aims to explore the relevant sector rotation trends first to predict which sectors will receive the next batch of funds. It′s possible to make advance arrangements before the stocks rise. The main model used in this study is the Transformer model to explore stock price prediction problems. Through the model′s predictions, investors can obtain advance knowledge of the stock′s trend, reduce investment risks, and increase investment returns. In addition to using the Transformer model, the study also attempts to incorporate sector rotation factors to verify whether they can effectively improve the accuracy of stock price predictions.
    顯示於類別:[資訊管理學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML19檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明