English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40889556      線上人數 : 1295
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93198


    題名: 基於圖序列的下一個項目和時間預測推薦系統;Graph Sequence based recommendation system for next item and time prediction
    作者: 王茂田;Wang, Mao-Tien
    貢獻者: 資訊管理學系
    關鍵詞: 推薦系統;序列推薦;圖神經網路;注意力機制;項目和時間預測;Transformer;Recommendation System;Sequential Recommendation;Graph Neural Network;Attention Mechanism;Transformer
    日期: 2023-07-18
    上傳時間: 2024-09-19 16:47:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 根據過去的文獻研究,大部分的 Next-item 預測問題都專注於預測使用者可能感興趣的下一個項目。雖然有些研究會利用時間資訊來幫助預測使用者下一個互動的項目,或是預測使用者可能互動的項目及時間間隔,但目前尚未有研究同時預測使用者可能感興趣的下一項目、時間間隔及互動持續時間。然而,在大量的先前順序推薦模型研究中,圖形神經網路(GNN)被發現能夠充分納入整體資訊,增強資訊編碼的完整性,從而提高下一個項目預測的準確度。因此,本研究提出了一種名為 GSMRecIT 的模型,利用 GNN
    圖神經網路對用戶序列進行嵌入處理。同時該模型使用 Transformer 以及注意力網路來決定不同序列資料的權重,以捕捉用戶的長期和短期偏好。並針對使用者感興趣的項目、時間間隔和互動持續時間進行 Top-N 預測。實驗結果顯示,本研究的方法在項目、時間間隔、互動持續時間三個方面的預測任務中都提高了預測的準確率。;Based on existing literature, most studies on next-item prediction focus on predicting the next item of interest to users. While some research incorporates temporal information to predict the next user interaction item or both the item and the time interval until the next interaction, there is currently no study that simultaneously predicts the next item, the time interval, and the duration of the interaction. However, extensive research on sequential recommendation models has shown that Graph Neural Networks (GNNs) effectively integrate overall information and enhance the integrity of information encoding, thereby improving the accuracy of next-item prediction.
    Therefore, this study introduces GSMRecIT, a novel model that leverages GNNs for embedding processing on user sequences. Additionally, the model incorporates Transformer and attention networks to determine the weights of different sequence data, capturing users′ long-term and short-term preferences. Moreover, the model provides top-N predictions for items, time intervals, and interaction durations that users are interested in. Experimental results demonstrate that the proposed approach significantly enhances the prediction accuracy across all three aspects: item, interval and duration.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML7檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明