English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119941      線上人數 : 1375
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94556


    題名: 設備製造業之物料預測及購買物料之風險評估探討-以T公司為例
    作者: 蔡湘凌;Tsai, Shiang Ling
    貢獻者: 工業管理研究所在職專班
    關鍵詞: 物料預測分法;風險評估
    日期: 2024-05-21
    上傳時間: 2024-10-09 15:16:21 (UTC+8)
    出版者: 國立中央大學
    摘要: 2019年底至2020年初,全球爆發了嚴重特殊傳染性肺炎(COVID-19)疫情。為有效防止疫情蔓延,各國紛紛採取封城及封閉式管理措施,企業和學校不得不實行遠距離辦公和線上教學。從而催生"零接觸經濟"這一概念,然而, 2022年爆發的俄烏戰爭、美國頒布的"芯片法案"等事件迫使供應鏈面臨重組,使得供應鏈系統承受巨大壓力。因次,本文研究方法為針對該研究個案企業目前現行物料預測方法-由下往上法進行分析,並提出適合該公司的移動平均預測方法和平均絕對誤差(MAD)進行驗證,藉此協助該企業如何準確把握客戶和市場需求以降低庫存提出。針對系統層面提出先進規劃排程法進行研究,另一方面,透過該個案產業的歷史資料提出面對市場的不確定性如何能好的控管風險。本研究結果發現透過歷史資料分析該產業的景氣循環為每4年一次,同時透過移動平均法和平均絕對誤差驗證後,以2022年為例預測數量出機數2023台,實際出機數和為1843台兩者差距為9.8%,透過此計算方式得預測量出機數為2014台,兩者差距可縮小至9.2%。;At the end of 2019 and beginning of 2020, a severe outbreak of the novel coronavirus disease (COVID-19) occurred globally. To effectively prevent the spread of the epidemic, countries implemented citywide lockdowns and closed management measures, forcing companies and schools to adopt remote working and online teaching. This gave rise to the concept of a "zero-contact economy." However, events such as the 2022 Russia-Ukraine war and the U.S. CHIPS Act forced supply chains to reorganize, putting tremendous pressure on supply chain systems. Therefore, this study analyzes the current bottom-up material forecasting method used by the case study company, and proposes a suitable moving average forecasting method and mean absolute deviation (MAD) for verification to assist the company in accurately grasping customer and market demand to reduce inventory levels. At the system level, an advanced planning and scheduling method is proposed. On the other hand, historical data from the case study industry is used to propose how to better manage risks in the face of market uncertainty. The study finds that based on historical data analysis, the industry experiences a business cycle every 4 years. Using the moving average method and MAD verification, taking 2022 as an example, the predicted output quantity for 2023 is 2,023 units, while the actual output quantity is 1,843 units, a difference of 9.8%. Using this calculation method, the predicted output quantity is 2,014 units, narrowing the difference to 9.2%.
    顯示於類別:[工業管理研究所碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML25檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明