本篇研究論文第一部份為合成含以四苯乙烯為主體,並接上吡啶化合物,外接上不同分子基團形成鹽類化合物,分別合成出TDP、TPE-PC8、TPE-PA、TPE-PN四種鹽類分子結構。鹽類分子可以鈣鈦礦層中未配位之鉛離子和鹵素離子結合,鈍化缺陷。其中TDP外接上三苯胺分子,形成D-A-D 型之分子結構。期望透過三苯胺分子及吡啶鹽之間形成良好的internal charge tranfer,提高載子遷移率。其餘三個鹽類化合物則在末端接上不同長碳鏈錨定基團,利用自主裝方式有序的吸附在層與層之間,能防止水氣進入,提升鈣鈦礦太陽能電池之穩定性。 第二部份為大環分子之合成,我們選用咔唑為大環分子之中心核,並以Triazine分子當作橋梁,形成兩種不同大小D-A型之環分子。一方面,共軛環分子能形成環電流,增進電洞遷移率。另一方面,期望透過結構上氫鍵作用力形成有序堆疊之柱狀分子,提升晶粒尺寸,提升光電轉換效率。 ;The first part of this thesis focuses on the synthesis of salt compounds that contain tetraphenylethylene structures, connected with pyridine compounds. We designed four salt structures, TDP, TPE-PC8, TPE-PA, and TPE-PN. These salt molecules can bind to uncoordinated lead ions and halide ions in perovskite layers, thereby passivating defects. TDP connects with triphenylamine molecules, formed a D-A-D type molecular structure, hoping to enhance good internal charge transfer between triphenylamine molecules and pyridinium to enhance carrier mobility. The other three salt compounds are terminated with different anchoring groups of the carbon chain, adsorbing orderly between layers in terms of Self-Assembled Monolayers, preventing moisture and enhancing the stability of perovskite solar cells. The second part involves the synthesis of macrocyclic molecules, with carbazole chosen as the central core and triazine molecules as bridges, forming two different-sized D-A type cyclic molecules. On one hand, conjugated cyclic molecules can generate ring currents, facilitating hole mobility. On the other hand, We expected that macrocyclic molecules order stacking of columnar molecules by hydrogen bonding interactions. By doing so, it gets the chance to increase grain size and enhance photovoltaic conversion efficiency.