在本研究中,提出了一種基於Spatial Attention U-Net (SA U-Net)神經網路從電離圖中提取電離層回波訊號的方法。電離圖資料由位於台灣花蓮(北緯 23.99°,東經 131.61°)的垂直入射脈衝電離層雷達(Vertical Incidence Pulsed Ionospheric Radar,VIPIR)提供,每天可產生288張電離圖。SA U-Net是一種以圖像分割為目的而開發的卷積神經網路。目前,我們收集了2013年8月至2014年6月的常態數據,使用SA U-Net訓練以及自動處理這些數據,並以各訊號的臨界頻率以及虛擬高度準確度作為判斷SA U-Net性能的方式。最後,我們還對訓練資料進行分類處理,嘗試使用分類後的資料訓練神經網路模型,期望能提高模型對該類電離圖訊號的判斷成功率。;In this study, we propose a method for extracting ionospheric echo signals from ionograms based on Spatial Attention U-Net (SA U-Net) neural network. Ionogram data are provided by the Vertical Incidence Pulsed Ionospheric Radar (VIPIR) located in Hualien, Taiwan (23.99° north latitude, 131.61° east longitude), which can produce 288 ionization maps every day. SA U-Net is a convolutional neural network developed for the purpose of image segmentation. Currently, we have collected normal data from August 2013 to June 2014, used SA U-Net to train and automatically process the data, and used the critical frequency and virtual height accuracy of each signal as a criterion to judge the performance of SA U-Net. Finally, we classify the training data and try to use the classified data to train the neural network model, hoping to improve the judgment success rate of the model.