染料敏化太陽能電池(Dye-sensitized Solar Cells,DSCs)具有可透光性、多彩性及低製造成本,可應用於建築物玻璃帷幕、天窗等,它們可透過吸附在多孔隙二氧化鈦(TiO2)薄膜表面的光敏化劑,搭配液態電解質將光能轉換為電能,且可透過調整敏化劑分子結構、氧化還原介質和元件結構提高元件的光電轉換效率(Power Conversion Efficiency,PCE)。為了使元件能展現最佳性能,本研究針對本實驗室所開發的新型含氯元素之多聯吡啶釕錯合物染料(CYC-42Cl與CYC-43Cl)進行元件優化,除了透過使用鵝去氧膽酸(Chenodeoxycholic Acid,CDCA)作為共吸附劑,也嘗試導入丁苯羥酸(2-(4-Butoxyphenyl)-N-hydroxyacetamide,BPHA),以期望共吸附劑能減少染料在二氧化鈦薄膜上的聚集程度,進而增加元件的短路電流密度,若能一併鈍化裸露的二氧化鈦表面,則可抑制電荷再結合,以增加元件的開路電壓與填充因子。經優化後,在標準測試條件下(AM 1.5G,25 oC),未添加共吸附劑的CYC-42Cl與CYC-43Cl染料敏化元件效率分別為6.67%和8.06%,添加CDCA的敏化元件則為7.49%及8.15%,而添加BPHA的敏化元件具有最高的光電轉換效率達7.99%與8.52%。透過比較CYC-42Cl及CYC-43Cl染料敏化元件發現,於多聯吡啶釕錯合物固著配位基上使用不同推(叔丁基-CYC-42Cl)、拉(氯原子-CYC-43Cl)電子基,會造成元件性能差異,其歸因於CYC-43Cl染料具有更強的抗聚集能力,且ATR-FTIR光譜數據顯示CYC-43Cl染料可於TiO2表面形成更強的架橋式鍵結。另外,IMPS、IMVS及CE測量結果表明,CYC-43Cl染料會使TiO2導電帶位能降低,此有助於提高電子注入驅動力,從而增加元件的短路電流密度,且對比而言,CYC-43Cl (BPHA)敏化元件具有更長的電荷再結合生命期與最高的電荷收集效率,因此本研究展現於固著配位基導入氯原子是設計高效能多聯吡啶釕錯合物的新方向。;Dye-sensitized solar cells (DSCs) offer transparency, color variety, and low manufacturing costs, making them suitable for various building-integrated applications. This study optimizes devices using new chlorine-containing polypyridine ruthenium complex dyes (CYC-42Cl and CYC-43Cl), focusing on the role of co-adsorbents chenodeoxycholic acid (CDCA) and 2-(4-butoxyphenyl)-N-hydroxyacetamide (BPHA). These co-adsorbents aim to reduce dye aggregation, increase short-circuit current density (Jsc), and suppress charge recombination while improving open-circuit voltage (Voc) and fill factor (FF). Under standard testing conditions (AM 1.5G, 25 oC), devices without co-adsorbents showed efficiencies of 6.67% (CYC-42Cl) and 8.06% (CYC-43Cl). CDCA addition improved these to 7.49% and 8.15%, while BPHA yielded the highest efficiencies of 7.99% and 8.52%. The study revealed performance differences are due to the electron-donating group (tert-butyl: CYC-42Cl) and the electron-withdrawing group (chloro: CYC-43Cl) on the ruthenium complexes. This is attributed to the stronger anti-aggregation ability of CYC-43Cl. ATR-FTIR spectral data also shows that CYC-43Cl forms stronger bidentate bridging bonds on the TiO2 surface. Moreover, IMPS, IMVS, and CE measurements indicate that devices sensitized with CYC-43Cl exhibit a lower TiO2 conduction band potential. This characteristic is associated with an increased driving force for electron injection, which may contribute to these devices′ higher short-circuit current density. In contrast, the CYC-43Cl (BPHA) sensitized device has a longer charge recombination lifetime and the highest charge collection efficiency. Therefore, this study demonstrates that introducing chlorine atoms to the anchoring ligand is a new direction for designing high-performance polypyridine ruthenium complexes.