中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95098
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41631095      Online Users : 3719
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95098


    Title: Development of DFT-Based Spin-Orbit Torque Calculations in Magnetic Heterostructures
    Authors: 黃寶輝;Huang, Bao-Huei
    Contributors: 物理學系
    Keywords: 自旋軌道力矩;第一原理計算;磁性異質結構;凡德瓦材料;非平衡格林函數;JunPy;Spin-orbit torque;First-principles calculation;Magnetic heterostructures;Van der Waals materials;NEGF;JunPy
    Date: 2024-08-20
    Issue Date: 2024-10-09 15:49:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在磁阻式隨機存取記憶體(magnetoresistive random-access memory,MRAM)的產業中,基於自旋轉移力矩(spin-transfer torque,STT)的STT-MRAM被提議為下一代記憶體裝置,因其具備高速的寫入和讀取性能以及低能耗。然而,直接通過元件的穿隧電流,可能因焦耳熱效應而降低其壽命。在另一方面,新提出的基於自旋軌道力矩(spin-orbit torque,SOT)的SOT-MRAM可能可以克服這一問題。與穿隧電流不同的是,通過重金屬的平面寫入電流在界面產生SOT效應,從而翻轉了自由層的磁化方向。

    從理論的角度來看,我們旨在了解自旋力矩的機制,同時考慮材料的性質、磁性、自旋軌道耦合(spin-orbit coupling,SOC)和電控制。我們為此開發了「JunPy」程式,利用非平衡格林函數(nonequilibrium Green′s function,NEGF)方法,與基於第一原理的自洽哈密頓量,來計算零電壓狀態和電流誘導的STT和SOT效應。

    在這篇論文中,我們研究四個系統來演示自旋力矩的計算:(1)單分子磁性異質接面(single-molecule magnetic junctions,SMMJs);(2)Fe/MgO/Fe磁性穿隧異質接面(magnetic tunnel junction,MTJ);(3)鐵薄膜;(4)新穎凡德瓦二維鐵磁異質接面,Cr3Te4/PtTe2。研究SMMJs和MTJs中的零電壓和電流產生的STT,使我們能夠研究exchange bias效應和電流驅動的磁翻轉。除了利用常見的能量計算法,零電壓的SOT有助於我們探索平面或垂直磁各向異性。最後,我們研究了Cr3Te4/PtTe2中的電流誘導的SOT和介面產生的Rashba效應,演示了使用二維鐵磁材料來設計室溫SOT-MRAM的潛力。這些研究為自旋力矩的機制和操控提供了重要的見解,推動下一代記憶體裝置的發展,並進一步突顯了二維鐵磁材料在實現高效且可靠的MRAM技術中的潛力。;In the magnetoresistive random-access memory (MRAM) industry, spin-transfer torque (STT) based STT-MRAM has been proposed as a next-generation memory device because of its high-speed writing and reading processes and low energy consumption. However, the direct tunneling current passing through the device can reduce its lifetime due to Joule heating. On the other hand, the newly proposed spin-orbit torque (SOT) based SOT-MRAM may overcome this issue. Instead of a tunneling current, an in-plane writing current flowing through a heavy metal generates a SOT effect at the interface, rotating the magnetization direction of the magnetic free layer.

    From a theoretical perspective, we aim to understand the mechanism of spin torques, considering material properties, magnetism, spin-orbit coupling (SOC), and electrical control. For this purpose, we developed the "JunPy" package to calculate STT and SOT using first-principles calculated self-consistent Hamiltonians with the nonequilibrium Green′s function (NEGF) method. This allows us to study both equilibrium and current-induced STT and SOT.

    In this dissertation, we examine four systems to demonstrate spin torque calculations: (1) single-molecule magnetic junctions (SMMJs), (2) a conventional Fe/MgO/Fe magnetic tunnel junction (MTJ), (3) iron thin films, and (4) a novel van der Waals two-dimensional ferromagnetic (2DFM) heterojunction, Cr3Te4/PtTe2. Studying the equilibrium and current-induced STT in SMMJs and MTJs allows us to investigate the exchange bias effect and current-driven magnetization switching. The equilibrium SOT helps us exploring in-plane or perpendicular magnetic anisotropy beyond the energy method. Finally, we investigate the current-induced SOT and interfacial Rashba effect in Cr3Te4/PtTe2, demonstrating the potential for designing a room-temperature SOT-MRAM using 2DFM materials. These studies provide valuable insights into the mechanisms and control of spin torques, advancing the development of next-generation MRAM technology. Furthermore, our works highlight the potential of 2DFM materials in achieving efficient and reliable MRAM technology.
    Appears in Collections:[Graduate Institute of Physics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML38View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明