中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95272
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42120301      在线人数 : 1280
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95272


    题名: 多維度連續有界資料的強韌概似分析 ─以人體體脂百分比資料為例;Robust Likelihood approach for multivariate continuous bounded data ─ taking the body fat percentage data for example
    作者: 李雨澈;Lee, Yu-Che
    贡献者: 統計研究所
    关键词: 強韌概似函數;多元負二項分配;廣義線性混和模型;多維度連 續有界資料
    日期: 2024-07-10
    上传时间: 2024-10-09 16:36:56 (UTC+8)
    出版者: 國立中央大學
    摘要: 有界連續型資料於醫學研究領域中十分常見,尤其比率資料常作為醫療判
    斷或參照的指標,例如本文實例–人體體脂百分比資料。該資料收集了每個人
    手臂、軀幹、腹部、臀部及腿部五個不同部位的體脂率,由於這些觀察值來自
    同一個人所提供,因此資料往往會具有相關性,此時便可考慮使用多元廣義線
    性混和模型 (multivariate generalized linear mixed models) 進行描述及分析。然
    而,當資料維度增加時,計算最大概似估計量(maximum likelihood estimation)常
    會面臨高維度積分的問題,需仰賴耗時的數值積分或其他積分近似方法進行計
    算,並且在未知資料真實分配的情況,若分配模型假設錯誤,也可能得到不合
    適或不正確的結果。
    本文利用強韌化多元負二項分配 (multivariate negative binomial distribution)
    之概似函數分析多維連續有界資料。除了在錯誤模型假設下,仍能對感興趣之
    參數提供具一致性的估計量外,計算過程也不需對模型進行積分。而本文模擬
    研究與實例分析中所呈現的強韌華德檢定統計量 (robust wald statistics)、強韌分
    數檢定統計量 (robust score statistics) 及強韌概似比檢定統計量 (robust
    likelihood ratio statistics),說明了強韌概似方法方法在資料真實分配未知的狀況
    下,仍可做出正確的統計推論。;In clinical studies and biomedical research, it is common to encounter continuous
    bounded data, such as body fat percentage. This paper focuses on a dataset that
    includes body fat percentages measured at five regions of each body: arms, legs,
    trunk, android, and gynoid. Since these five observations come from the same
    individual, correlations exist in different responses. Some researchers choose
    multivariate generalized linear mixed models (MGLMMs) to model this type of data.
    However, when dealing with high-dimensional data, estimating the maximum
    likelihood often faces challenges due to high-dimensional integration. Furthermore, if
    the model is misspecified, the analysis may yield incorrect results.
    This paper applies a robust multivariate negative binomial likelihood function to
    analyze multivariate continuous bounded data. In addition to consistent estimates for
    the parameters of interest, the adjusted likelihood function enables obtaining correct
    asymptotic variance estimates. Moreover, the robust Wald statistics, robust score
    statistics, and robust likelihood ratio statistics presented in this paper show that the
    robust likelihood approach can always make correct statistical inferences even if the
    true underlying distribution is unknown
    显示于类别:[統計研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML30检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明