中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95567
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41655627      線上人數 : 2305
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95567


    題名: 以機器學習建構新生兒健康之臨床決策支援系統;Implementing a Clinical Decision Support System for Newborn Health through the application of machine learning techniques
    作者: 楊涓言;Yang, Chuan-Yen
    貢獻者: 資訊管理學系
    關鍵詞: 機器學習;低出生體重;新生兒健康;臨床決策系統;早產
    日期: 2024-07-26
    上傳時間: 2024-10-09 17:03:47 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著全球少子化趨勢加劇,嬰兒健康問題尤為重要,早產與低出生體重是導致新生兒死亡和發展障礙的主要因素,對家庭、社會及醫療系統造成重大負擔,且近年來,臺灣亦面臨生育率持續下降的問題,進一步加劇了新生兒健康議題的重要性,因此,如何有效預測並降低早產與低出生體重的發生,成為當前研究的一個重要方向。本研究共設計了兩階段實驗,透過分析孕產婦和新生兒的住院臨床資料,利用機器學習方法找出導致早產和低出生體重的潛在因素,實驗一針對新生兒早產的預測模型,實驗二針對新生兒低出生體重的預測模型。結果顯示,極限梯度提升樹在預測新生兒早產和低出生體重方面表現最佳,透過模型結果,最終建立新生兒健康的臨床決策系統,以作為早期識別高風險新生兒的工具,使醫療專業人員能及時進行干預和護理,提供更為精準的醫療資源配置,以減少不良健康結果的發生。;With the intensification of the global trend of declining birth rates, infant health issues have become particularly important. Premature birth and low birth weight are major factors leading to newborn mortality and developmental disabilities, imposing significant burdens on families, society, and healthcare systems. In recent years, Taiwan has also faced continuously declining birth rates, further emphasizing the importance of newborn health issues. Therefore, effectively predicting and reducing the occurrence of premature birth and low birth weight has become a key focus of current research. This study designed two-stage experiments, analyzing clinical data of pregnant women and newborns to identify potential factors leading to premature birth and low birth weight using machine learning methods. The first experiment focused on a predictive model for premature birth, while the second experiment focused on a predictive model for low birth weight. The results showed that extreme gradient boosting trees performed best in predicting premature birth and low birth weight in newborns. Based on the model results, a clinical decision support system for newborn health was established. This system serves as a tool for early identification of high-risk newborns, enabling healthcare professionals to intervene and provide care promptly, allocate medical resources more accurately, and reduce the occurrence of adverse health outcomes.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML41檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明