English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41618211      線上人數 : 2002
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95993


    題名: 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究;Enhancement of energy conversion efficiency and heavy metals removal in co-gasification of wastewater sludge and anaerobic digestate using hot gas cleaning system
    作者: 彭翊茹;Peng, Yi-Ju
    貢獻者: 環境工程研究所
    關鍵詞: 廢水污泥;沼渣;氣化;高溫淨化系統;重金屬;Wastewater sludge;Anaerobic digestate;Gasfication;Hot gas cleaning system;Heavy metals
    日期: 2024-08-19
    上傳時間: 2024-10-09 17:28:53 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究利用實驗室規模流體化床氣化爐,探討廢水污泥(Wastewater Sludge, WS)及沼渣(Anaerobic Digestate, AD)共同氣化產能,以及應用高溫淨化系統(Hot gas cleaning system)評估提高產氣品質及去除重金屬之可行性。試驗條件主要包括氣化溫度700、800及900℃、當量比(Equivalence Ratio, ER)為0.3,摻混比例分別為WS:AD = 3:1、1:1及1:3。至於高溫淨化系統則分別填充沸石、煅燒白雲石及活性碳三種吸附劑。
    研究結果顯示,廢水污泥氣化反應產氫組成比例,由氣化溫度700℃之1.40 vol.%增加至900℃之5.21 vol.%,其冷燃氣效率由8.96%增加至18.71%,平均產氣熱值則由1.79 MJ/Nm3增加至3.69 MJ/Nm3。而沼渣氣化試驗之產氣中氫氣組成比例,亦由700℃之3.07 vol.%增加至900℃之6.57 vol.%,合成氣之冷燃氣效率則由9.55%增加至16.27%,平均產氣熱值亦由2.04 MJ/Nm3增加至3.43 MJ/Nm3。依據上述研究結果可知,增加氣化溫度有助於促進水氣(Water-gas)、Boudouard反應及焦油裂解等吸熱反應,產生較多可燃氣體,進而提升產氣熱值。
    廢水污泥及沼渣共同氣化反應試驗,結果顯示,在氣化溫度900℃條件下,合成氣之氫氣組成比例介於4.99~5.80 vol.%,其中以WS:AD = 1:3條件下,氫氣組成比例最高,就合成氣之平均產氣熱值而言,主要介於3.56~3.65 MJ/Nm3;而冷燃氣效率則介於16.96~17.46%之間。若考量共同氣化反應之平均產氣熱值而言,以摻混比例1:1之條件,有較佳之產氣熱值。
    應用高溫淨化系統之氣化試驗結果顯示,合成氣之組成比例均有增加之趨勢,其中以沼渣氣化結果而言,合成氣之氫氣組成比例介於7.79~9.52 vol.%之間,較未使用高溫淨化系統之試驗結果為高。至於平均產氣熱值介於3.96~4.16 MJ/Nm3之間,亦是有增加之現象。根據氣化產物之重金屬分析可知,應用高溫淨化系統之試驗可去除部分氣相產物中之重金屬,其中銅(Cu)之去除率介於10.83~28.31%,鉻(Cr)之去除率介於19.77~40.10%,鋅(Zn)之去除率介於18.76~28.84%,鎵(Ga)之去除率介於54.80~70.85%,銦(In)之去除率介於30.76~49.57%。整體而言,廢水污泥及沼渣具有共同氣化產能應用之潛力,同時應用高溫淨化系統,可有效提升產氣品質及去除重金屬,本研究初步獲得之成果,可供後續工程應用之參考依據。
    ;This study investigates the co-gasification of wastewater sludge (WS) and anaerobic digestate (AD) using a laboratory-scale fluidized bed gasifier, focusing on enhancing gas production quality and assessing the feasibility of heavy metal removal via a hot gas cleaning system. The experiments were conducted at gasification temperatures of 700, 800 and 900℃, an equivalence ratio (ER) of 0.3, and blending ratios of WS to AD at 3:1, 1:1 and 1:3. The hot gas cleaning system was equipped with three adsorbents: zeolite, calcined dolomite and activated carbon.
    For WS gasification, the study revealed a significant enhancement in hydrogen production, from 1.40 vol.% at 700℃ to 5.21 vol.% at 900℃, with a corresponding rise in cold gas efficiency (CGE) from 8.96% to 18.71%. The heating value of the product gas also saw a substantial improvement, from 1.79 MJ/Nm3 to 3.69 MJ/Nm3. In the case of AD gasification, a similar trend was observed, with hydrogen production increased from 3.07 vol.% at 700℃ to 6.57 vol.% at 900℃, and CGE rising from 9.55% to 16.27%. The heating value of the product gas also saw a significant increase, from 2.04 MJ/Nm3 to 3.43 MJ/Nm3. These results, underscore the efficiency of the gasification process, with higher gasification temperatures favoring endothermic reactions and leading to more combustible gas production and a higher heating value of the produced gas. During the co-gasification of WS and AD at 900℃, hydrogen production ranged from 4.99 to 5.80 vol.%, with the highest yield observed at a WS:AD = 1:3. The heating value of the product gas varied between 3.56 and 3.65 MJ/Nm3; while CGE ranged from 16.96 to 17.46%. A blending ratio of 1:1 was found to optimize the heating value of the product gas.
    The gasification tests incorporating the hot gas cleaning system revealed a notable increase in the syngas composition ratio. For AD gasification, the syngas′ hydrogen content surged to 7.79 and 9.52 vol.%, surpassing the results obtained without the hot gas cleaning system. The heating value of the product gas also saw a significant increase, ranging from 3.96 to 4.16 MJ/Nm³. Most importantly, the hot gas cleaning system played a pivotal role in effectively removing heavy metals from the gas phase products, with impressive removal rates of 10.83% to 28.31% for copper (Cu), 19.77% to 40.10% for chromium (Cr), 18.76% to 28.84% for zinc (Zn), 54.80% to 70.85% for gallium (Ga), and 30.76% to 49.57% for indium (In).
    Overall, the study underscores the promising potential of WS and AD for co-gasification. The hot gas cleaning system emerges as a significant player, enhancing gas production quality and enabling the removal of heavy metals. These preliminary findings provide a beacon of hope for future engineering applications in the field of waste management and environmental engineering.
    顯示於類別:[環境工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML32檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明