二硫化鉬 (MoS2) 在許多研究中都展現優異的光電性質,被視為下一世代前瞻半導體,然而目前生產高品質且層數控制良好的 MoS2 多層薄膜仍然是一項重大挑戰,使商業價值降低。而兩階段式的成長則可以有效提高良率,透過物理沉積的方式將前驅物鍍在基板上再經過高溫和硫氣體分子反應,獲得層數可控且兼具品質的 MoS2 連續薄膜。 本研究利用 RF 磁控濺鍍系統 (Radio-Frequency Magnetron Sputtering) 進行反應式氧化鉬電漿沉積,將前驅物濺鍍在氧化矽基板上再進行高溫轉化成 MoS2 薄膜,透過調控濺鍍時間控制不同的 MoS2 層數,探討不同製程參數對成長 MoS2 薄膜的影響,其參數包含電漿功率、壓力、載臺溫度、鉬氧比及硫化溫度。利用拉曼光譜 (Raman Spectroscopy) 分析各參數下,發現在最佳條件下,電性量測可得到開關電比為104 ,電子遷移率 0.5 cm2 V−1 s−1 ,照光下的光電流變化量可到 244 %。 ;Molybdenum disulfide (MoS₂) has demonstrated excellent optoelectronic properties in numerous studies and is considered a promising next-generation semiconductor. However, producing high-quality MoS₂ multilayer thin films with well-controlled layer numbers remains a significant challenge, which reduces its commercial viability. The two-step growth method can effectively improve yield by physically depositing precursors onto substrates, followed by high-temperature reactions with sulfur gas molecules to obtain continuous MoS₂ thin films with controllable layer numbers and high quality. In this study, we utilized a radio-frequency magnetron sputtering system to perform reactive plasma deposition of molybdenum oxide, sputtering the precursor onto silicon oxide substrates, followed by high-temperature conversion into MoS₂ thin films. By adjusting the sputtering time to control different MoS₂ layer numbers, we investigated the effects of various process parameters on the growth of MoS₂ thin films. These parameters include plasma power, pressure, substrate temperature, molybdenum-to-oxygen ratio, and sulfurization temperature. Using Raman spectroscopy to analyze the samples under different conditions, we found that under optimal parameters, electrical measurements yielded an on/off current ratio of 10⁴, an electron mobility of 0.5 cm² V⁻¹ s⁻¹, and a photocurrent variation of up to 244% under illumination.