中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/96231
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 46928763      線上人數 : 506
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96231


    題名: 低溫成長條件下利用金屬有機化學氣相沉積法於氧化矽基板上合成高品質二硫化鉬;Low-temperature condition growth high-quality Molybdenum Disulfide on Silicon Dioxide substrate by Metal Organic Chemical Vapor Deposition
    作者: 陳廷睿;CHEN, TING-RUI
    貢獻者: 能源工程研究所
    關鍵詞: 低熱預算;二硫化鉬;二維材料;鹽類促進劑
    日期: 2024-11-25
    上傳時間: 2025-04-09 17:20:42 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究針對後端製程中對低熱預算的需求進行探討,這在半導體技術中至關重要,因為現代電子元件對溫度的敏感性較高,尤其是在製程中已經存在的其他材料容易受到高溫影響。而傳統高溫化學氣相沉積法(CVD)要求高溫條件成長出高品質二硫化鉬,對後端製程的兼容性構成挑戰,因此低溫沉積技術具有重要的應用價值。
    本研究採用了金屬有機化學氣相沉積法(MOCVD),其優勢在於可以在相對較低的溫度下操作,同時確保較好的材料品質。選用的前驅物是六羰基鉬(Mo(CO)6)和氣體硫化氫(H2S)能夠在較低溫度下反應,減少對基材的熱損傷。基板方面則是選用半導體元件中的矽基板,既能保持製程相容性,並符合當前半導體製程的需求。
    為了進一步提高二硫化鉬(MoS2)的結晶品質,本研究引入氯化鈉(NaCl)作為促進劑。氯化鈉的添加不僅能促進二硫化鉬的成核,還能有效增大晶粒尺寸,進而提升薄膜的結晶品質。氯化物的揮發性在低溫下有助於抑制晶界的形成,使MoS2層的連續性和均勻性大幅提升,這對於應用於高性能電子元件的二維材料來說至關重要。
    此外,本研究在成長過程中還會調整關鍵的參數,如前驅物的流量、氣體的壓力和沉積時間,並針對不同的基材溫度區進行實驗優化。透過這些細緻的工藝控制,能夠實現更均勻的二硫化鉬沉積,並改善材料的光學和電學性能。進一步的晶體結構和光學分析,如拉曼光譜和光致發光光譜,將用來評估材料的晶體品質、層數和均勻性,這些結果將為將來低熱預算的製程技術提供有力支持。
    目前實驗已經在356°C至414°C的溫度條件下,優化了參數進行沉積,在40分鐘內成功於經過食人魚溶液清洗過的矽基板上,成長出40~73 nm厚度的雙層二硫化鉬。透過光致發光光譜儀的測試,確認了其結晶品質,能達到62.59 meV的能隙寬度。此外,本研究也對不同前處理條件下的基板進行了成長測試,並藉由調整基板的擺放方式與前處理,成功提升了二硫化鉬的品質和均勻性,達到高品質和高均勻性的MoS2薄膜。這些優化成果為未來二維材料的工業應用提供了關鍵的技術參考。
    ;This study explores the demand for low thermal budgets in back-end processes, which is crucial in semiconductor technology due to the high-temperature sensitivity of modern electronic devices. Other materials already present in the process are particularly prone to damage from high temperatures. Traditional high-temperature chemical vapor deposition (CVD) requires elevated temperatures to grow high-quality molybdenum disulfide (MoS2), posing challenges for compatibility with back-end processes. Therefore, low-temperature deposition techniques hold significant application value.
    In this study, metal-organic chemical vapor deposition (MOCVD) was adopted for its ability to operate at relatively lower temperatures while ensuring high material quality. The precursors chosen were molybdenum hexacarbonyl (Mo(CO)6) and hydrogen sulfide (H2S), which can react at lower temperatures, reducing thermal damage to the substrate. Silicon wafers, commonly used in semiconductor devices, were selected as the substrate, ensuring process compatibility and meeting the requirements of current semiconductor processes.
    To further improve the crystallinity of MoS2, sodium chloride (NaCl) was introduced as a promoter. The addition of NaCl not only promotes the nucleation of MoS2 but also effectively increases the grain size, thereby enhancing the crystallinity of the thin films. The volatility of chlorides at low temperatures helps suppress the formation of grain boundaries, significantly improving the continuity and uniformity of the MoS2 layers. This is crucial for applying 2D materials in high-performance electronic devices.
    Additionally, this study adjusted key parameters during the growth process, such as precursor flow rate, gas pressure, and deposition time, while optimizing the experiment for different substrate temperature zones. Through these meticulous process controls, more uniform MoS2 deposition was achieved, improving the material’s optical and electrical properties. Further analysis of crystal structure and optical properties, including Raman spectroscopy and photoluminescence (PL) spectroscopy, will be used to evaluate the crystallinity, number of layers, and uniformity of the MoS2, providing robust support for future low thermal budget process technologies.
    Currently, the experiment has optimized the deposition process at temperatures ranging from 356°C to 414°C. Within 40 minutes, a bilayer MoS2 film with a thickness of 40~73 nm was successfully grown on piranha solution-cleaned silicon substrates. The crystallinity was confirmed through photoluminescence spectroscopy, with a measured bandgap energy of 62.59 meV. Moreover, the study conducted growth tests on substrates with different pre-treatment conditions. By adjusting the substrate placement and pre-treatment methods, the quality and uniformity of the MoS2 were successfully enhanced, achieving high-quality, highly uniform MoS2 films. These optimized results provide critical technical references for the future industrial applications of 2D materials.
    顯示於類別:[能源工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML14檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明