English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56304953      線上人數 : 1159
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97654


    題名: 基於條件擴散模型之衛星影像去雲研究方法;Conditional Diffusion Model-Based Approach for Satellite Image Cloud Removal
    作者: 蔡承洋;Tsai, Cheng-Yang
    貢獻者: 企業管理學系
    關鍵詞: 衛星影像去雲;條件擴散模型;Landsat-8/9;影像修復;Satellite Image Cloud Removal;Condtional Diffusion model;Landsat 8/9;Image Restoration
    日期: 2025-08-28
    上傳時間: 2025-10-17 11:44:10 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究聚焦於光學衛星影像在地表資訊提取過程中,因雲層遮蔽而導致影像缺失
    與品質下降。被雲區遮擋的部分常使地表細節無法還原,進而影響多時相分析與定量
    反演的精準度。針對此問題,本研究提出一種基於條件擴散模型(Conditional Diffusion
    Model)的單幅衛星影像雲去除方法。
    首先,利用有雲與無雲之多光譜光學(Band 2–4)與輔助(Band 9–11)影像,透
    過像素級差分結合 K-means 無監督分類,自動生成二值化雲遮罩,同時以 GDAL 與
    Rasterio 完成多波段影像的幾何校正與對齊。接著,將校正後影像切分為 128×128 像
    素 Patch,並依雲覆蓋比例與無效像素閾值進行過採樣與篩選,透過資料翻轉與亮度調
    整以構建均衡且多樣的訓練資料集。
    模型架構採三模組設計:時間嵌入(Sinusoidal Encoding + MLP)、條件編碼器
    (多層卷積結合 Time-Condition Fusion Block 提取多尺度雲特徵)與去噪自編碼器
    (基於 UNet 結構和 Time-Condition Fusion Block 組成)。訓練階段引入 Sigmoid β
    排程與 Curriculum-t 取樣策略,並以動態加權的混合損失函數(ε-loss、ŷ₀-loss 及加權
    MS-SSIM),輔以自動混合精度(AMP)、指數移動平均(EMA)與梯度累積技術,
    確保模型在去噪、細節還原與結構保真度之間取得最佳平衡。推論時則採用精簡版
    DDIM 演算法(5–10 步),並以重疊區平均重建與雲遮罩融合輸出最終無雲影像。最
    終以PSNR 和 SSIM 定量指標來測試生成的圖片質量。;This study addresses the challenges posed by cloud occlusion in optical satellite imagery, which can obscure surface details and degrade the accuracy of multi-temporal analyses and quantitative retrieval. To overcome this, we propose a conditional diffusion-based method for single-image cloud removal on cloud data.
    A binary cloud mask is first generated by applying pixel-level differencing and K-means clustering to multi-spectral optical (Bands 2–4) and auxiliary infrared (Bands 9–11) images. These images are then geometrically corrected and co-registered using GDAL and Rasterio. The aligned data are partitioned into 128×128 pixel patches, which are oversampled and filtered based on cloud coverage ratio and invalid-pixel thresholds, forming a balanced and diverse training dataset.
    Our model architecture comprises three modules: (1) a time embedding unit employing sinusoidal encoding and an MLP, (2) a conditional encoder extracting multi-scale cloud representations through stacked convolutions and Time-Condition Fusion Blocks, and (3) a denoising autoencoder built upon a U-Net backbone integrated with Time-Condition Fusion Blocks. During training, we adopt a Sigmoid β schedule and a Curriculum-t sampling strategy, optimizing a dynamically weighted loss that combines ε-loss, ŷ₀-loss, and weighted MS-SSIM. Automatic mixed precision (AMP), exponential moving average (EMA), and gradient accumulation techniques are utilized to balance denoising performance, detail
    preservation, and structural fidelity. For inference, a simplified DDIM sampler with 5–10 steps is used, followed by overlap-averaging reconstruction and cloud mask fusion to generate the final cloud-free output. The resulting images are quantitatively evaluated using PSNR and SSIM metrics.
    顯示於類別:[企業管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML5檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明