English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56140433      線上人數 : 605
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98031


    題名: 廣義有限失效母體模型下結合資料增補的貝氏推論;Bayesian Inference Incorporating Data Augmentation under Generalized Limited Failure Population Models
    作者: 黃鉦文;HUANG, CHENG-WEN
    貢獻者: 統計研究所
    關鍵詞: 廣義有限失效母體;資料增補;不完整概似函數;共軛先驗分布;GLFP models;incomplete likelihood;data augmentaion;conjugate prior distribution
    日期: 2025-07-29
    上傳時間: 2025-10-17 12:16:20 (UTC+8)
    出版者: 國立中央大學
    摘要: 在如 IC 產品的一些電子零件中,由於製程或其他因素產生瑕疵,導致產品前期早衰(infant mortality)失效,而非瑕疵品則最終會因磨耗(wear-out)而失效。廣義有限失效母體(Generalized Limited Failure Population,GLFP)模型,可用於分析同時受因製程產生的瑕疵導致產品前期早衰,與後期終因長期磨損失效的產品或電子零件之失效時間數據。另一方面,自 E-M 演算法後,資料增補 (data augmentaion) 在統計學中的應用極為廣泛。本研究於對數常態分布 GLFP 模型,以貝氏方法結合資料增補建構完整概似函數,在各參數具共軛先驗分布下,以吉布斯抽樣(Gibbs sampling)加速馬可夫鍊蒙地卡羅(Markov chain Monte Carlo,MCMC)演算法的計算過程,從而提升計算效率。同時藉由資料增補的隱藏變數之後驗抽樣過程中,為每筆失效資料之失效模式和其是否為瑕疵品進行預測,並針對 Backblaze 公司所提供的硬碟資料,考慮不同的先驗資訊,進行壽命之可靠度相關分析。;Some electronic components such as integrated circuits contain latent defects introduced during manufacturing or other processes, causing a subset of units to fail prematurely (infant mortality), while non-defective units eventually fail due to wear-out. The generalized limited failure population (GLFP) model captures this dual behavior by jointly modeling early failures arising from manufacturing defects and later failures driven by long-term degradation. Based on the widely used data augmentation technique in statistics, this study develops a Bayesian GLFP framework with log-normal lifetime distributions. By augmenting the latent data, we construct the complete likelihood, assign conjugate priors to all parameters, and employ Gibbs sampling to accelerate Markov chain Monte Carlo (MCMC). The posterior draws of the latent augmentation variables simultaneously yield predictive classifications of each observed failure mode and defect status. Finally, using hard-drive failure data released by Backblaze, we perform reliability analysis under various prior assumptions to illustrate the practical utility of the proposed method.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明