English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56174341      線上人數 : 1565
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98146


    題名: Dynamic Graph Models for Efficient Multi-User MR Remote Rendering
    作者: 林柔伶;Lin, Jou-Ling
    貢獻者: 通訊工程學系
    關鍵詞: Augmented Reality (AR);Virtual Reality (VR);Mixed Reality (MR);Remote Rendering;latency compensation;Data Optimization for Transmission;Graph Theory;擴增實境;虛擬實境;混合實境;遠端渲染;延遲補償;傳輸數據優化;圖論
    日期: 2025-08-18
    上傳時間: 2025-10-17 12:25:27 (UTC+8)
    出版者: 國立中央大學
    摘要: 混合實境(Mixed Reality, MR)的遠端渲染需要在有限的網路資源下,有效分配頻寬以提供沉浸式體驗。本論文提出一個名為「串流圖論優化」(Graph-Theoretic Optimization for Streaming, GOS)的創新框架,旨在應對此項挑戰。GOS框架將傳統上各自獨立的可見性、分群與品質決策,整合成單一且整體的優化過程。此方法將MR環境模型化為一個動態圖形,其中邊的權重編碼了空間與動態的相互關係。GOS採用一種迭代式的協同優化迴圈,讓這些相互依存的決策能夠彼此提供資訊並相互完善。這種作法從根本上突破了靜態、序列式流程的限制,以有原則、數據驅動的機制取代了過往的特定啟發式演算法,從而無需手動調整參數。實驗評估證明,GOS的表現顯著優於基於啟發式演算法的方法,不僅能額外減少34%的頻寬消耗,同時還能將定位精準度提升56%。此框架在多樣化且動態的場景中皆展現出穩健的效能,證實其作為下一代MR系統高效能、可擴展解決方案的潛力。;Mixed Reality (MR) remote rendering demands efficient bandwidth allocation to deliver immersive experiences under constrained network resources. This paper proposes a novel Graph-Theoretic Optimization for Streaming (GOS) framework that addresses this challenge by unifying the traditionally separate decisions of visibility, clustering, and quality into a single, holistic optimization process. By modeling the MR environment as a dynamic graph where edge weights encode spatial and motion-based relationships, GOS employs an iterative co-optimization loop where these interdependent decisions mutually inform and refine one another. This approach fundamentally breaks from the limitations of static, sequential pipelines, replacing ad-hoc heuristics with principled, data-driven mechanisms that eliminate the need for manual parameter tuning. Experimental evaluations demonstrate that GOS significantly outperforms heuristic-based approaches, reducing bandwidth consumption by an additional 34% while simultaneously improving positioning accuracy by 56%. The framework achieves robust performance across diverse and dynamic scenarios, confirming its potential as an efficient and scalable solution for next-generation MR systems.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明