中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98196
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59223072      Online Users : 504
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98196


    Title: 整合YOLOv11-Pose與ByteTrack於邊緣運算平台之老年照護自主跟隨機器人;Edge-Enabled Autonomous Follower Robot for Elderly Care via Integration of YOLOv11-Pose and ByteTrack
    Authors: 高振耀;Kao, Chen-Yao
    Contributors: 資訊工程學系在職專班
    Keywords: YOLO;ByteTrack;邊緣運算;機器人
    Date: 2025-07-28
    Issue Date: 2025-10-17 12:28:37 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 全球高齡化使居家照護需求急升,傳統人力服務愈顯不足且難兼顧長者安全與自主。為解決此問題,本研究針對光線多變且狹小的動態家居環境,提出一款以邊緣運算為核心的自主跟隨機器人平台。系統融合改良之YOLOv11-Pose進行人體骨架聯合偵測,配合ByteTrack多目標追蹤以維持穩定ID,並透過RGB-D SLAM與OctoMap建構即時三維佔用地圖,以結合MIAT模組化架構。於NVIDIA Jetson Orin Nano實測,端到端閉迴路平均延遲85 ms,核心推論速率11.8 fps,追隨誤差±10 cm。結果證實,本方法能在低功耗裝置上提供近工業級精度與即時性,顯示深度視覺結合模組化設計可有效填補居家照護人力缺口,並為智慧照護機器人提供可擴充且具成本效益的實作範例。;The accelerating global aging trend is driving a surge in home-care demand, yet conventional, labor-intensive services can no longer balance the safety and autonomy of older adults. To bridge this gap, we present an edge-computing–centered autonomous follower-robot platform designed for dynamic, light-varying, and space-constrained residential settings. The system fuses an enhanced YOLOv11-Pose network for joint human-body and skeleton detection with ByteTrack multi-object tracking to maintain stable IDs, while RGB-D SLAM and OctoMap cooperate to construct a real-time 3D occupancy map. These perception and mapping modules are encapsulated within a MIAT modular architecture for efficient data flow. Deployed on an NVIDIA Jetson Orin Nano, the prototype achieves an end-to-end closed-loop latency of 85 ms, an overall closed loop rate of 11.8 fps, and a following error of ±10 cm. The results confirm that the proposed approach delivers near-industrial accuracy and real-time responsiveness on low-power hardware, demonstrating that deep-vision techniques married with modular design can effectively mitigate caregiver shortages in home settings while offering a scalable, cost-efficient blueprint for smart-care robots.
    Appears in Collections:[Executive Master of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML17View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明